16.1E: Exercises for Section 16.1 (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    154237
    • 16.1E: Exercises for Section 16.1 (1)
    • Gilbert Strang & Edwin “Jed” Herman
    • OpenStax

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    1. The domain of vector field \(\vecs{F}=\vecs{F}(x,y)\) is a set of points \((x,y)\) in a plane, and the range of \(\vecs F\) is a set of what in the plane?

    Answer
    Vectors

    For exercises 2 - 4, determine whether the statement is true or false.

    2. Vector field \(\vecs{F}=⟨3x^2,1⟩\) is a gradient field for both \(ϕ_1(x,y)=x^3+y\) and \(ϕ_2(x,y)=y+x^3+100.\)

    3. Vector field \(\vecs{F}=\dfrac{⟨y,x⟩}{\sqrt{x^2+y^2}}\) is constant in direction and magnitude on a unit circle.

    Answer
    False

    4. Vector field \(\vecs{F}=\dfrac{⟨y,x⟩}{\sqrt{x^2+y^2}}\) is neither a radial field nor a rotation field.

    For exercises 5 - 13, describe each vector field by drawing some of its vectors.

    5. [T] \(\vecs{F}(x,y)=x\,\hat{\mathbf i}+y\,\hat{\mathbf j}\)

    Answer

    16.1E: Exercises for Section 16.1 (2)

    6. [T] \(\vecs{F}(x,y)=−y\,\hat{\mathbf i}+x\,\hat{\mathbf j}\)

    Answer
    16.1E: Exercises for Section 16.1 (3)

    7. [T] \(\vecs{F}(x,y)=x\,\hat{\mathbf i}−y\,\hat{\mathbf j}\)

    Answer

    16.1E: Exercises for Section 16.1 (4)

    8. [T] \(\vecs{F}(x,y)=\,\hat{\mathbf i}+\,\hat{\mathbf j}\)

    9. [T] \(\vecs{F}(x,y)=2x\,\hat{\mathbf i}+3y\,\hat{\mathbf j}\)

    Answer

    16.1E: Exercises for Section 16.1 (5)

    10. [T] \(\vecs{F}(x,y)=3\,\hat{\mathbf i}+x\,\hat{\mathbf j}\)

    Answer

    16.1E: Exercises for Section 16.1 (6)

    11. [T] \(\vecs{F}(x,y)=y\,\hat{\mathbf i}+\sin x\,\hat{\mathbf j}\)

    Answer

    16.1E: Exercises for Section 16.1 (7)

    12. [T] \(\vecs F(x,y,z)=x\,\hat{\mathbf i}+y\,\hat{\mathbf j}+z\,\hat{\mathbf k}\)

    13. [T] \(\vecs F(x,y,z)=2x\,\hat{\mathbf i}−2y\,\hat{\mathbf j}−2z\,\hat{\mathbf k}\)

    Answer

    16.1E: Exercises for Section 16.1 (8)

    14. [T] \(\vecs F(x,y,z)=yz\,\hat{\mathbf i}−xz\,\hat{\mathbf j}\)

    For exercises 15 - 20, find the gradient vector field of each function \(f\).

    15. \(f(x,y)=x\sin y+\cos y\)

    Answer
    \(\vecs{F}(x,y)=\sin(y)\,\hat{\mathbf i}+(x\cos y−\sin y)\,\hat{\mathbf j}\)

    16. \(f(x,y,z)=ze^{−xy}\)

    17. \(f(x,y,z)=x^2y+xy+y^2z\)

    Answer
    \(\vecs F(x,y,z)=(2xy+y)\,\hat{\mathbf i}+(x^2+x+2yz)\,\hat{\mathbf j}+y^2\,\hat{\mathbf k}\)

    18. \(f(x,y)=x^2\sin(5y)\)

    19. \(f(x,y)=\ln(1+x^2+2y^2)\)

    Answer
    \(\vecs{F}(x,y)=\dfrac{2x}{1+x^2+2y^2}\,\hat{\mathbf i}+\dfrac{4y}{1+x^2+2y^2}\,\hat{\mathbf j}\)

    20. \(f(x,y,z)=x\cos\left(\frac{y}{z}\right)\)

    Answer
    \(\vecs \nabla f(x,y,z)=\langle \cos(\frac{y}{z}), \,\frac{-x}{z}\sin(\frac{y}{z}), \,\frac{xy}{z^2}\sin(\frac{y}{z})\rangle\)

    21. What is vector field \(\vecs{F}(x,y)\) with a value at \((x,y)\) that is of unit length and points toward \((1,0)\)?

    Answer
    \(\vecs{F}(x,y)=\dfrac{(1−x)\,\hat{\mathbf i}−y\,\hat{\mathbf j}}{\sqrt{(1−x)^2+y^2}}\)

    For exercises 22 - 24, write formulas for the vector fields with the given properties.

    22. All vectors are parallel to the \(x\)-axis and all vectors on a vertical line have the same magnitude.

    Answer
    \(\vecs{F}(x,y)=x\,\hat{\mathbf i}+0\,\hat{\mathbf j}\)

    23. All vectors point toward the origin and have constant length.

    Answer
    \(\vecs{F}(x,y)=\dfrac{(y\,\hat{\mathbf i}−x\,\hat{\mathbf j})}{\sqrt{x^2+y^2}}\)

    24. All vectors are of unit length and are perpendicular to the position vector at that point.

    25. Give a formula \(\vecs{F}(x,y)=M(x,y)\,\hat{\mathbf i}+N(x,y)\,\hat{\mathbf j}\) for the vector field in a plane that has the properties that \(\vecs{F}=\vecs 0\) at \((0,0)\) and that at any other point \((a,b), \vecs F\) is tangent to circle \(x^2+y^2=a^2+b^2\) and points in the clockwise direction with magnitude \(\|\vecs F\|=\sqrt{a^2+b^2}\).

    Answer
    \(\vecs{F}(x,y)=y\,\hat{\mathbf i}−x\,\hat{\mathbf j}\)

    26. Is vector field \(\vecs{F}(x,y)=(P(x,y),Q(x,y))=(\sin x+y)\,\hat{\mathbf i}+(\cos y+x)\,\hat{\mathbf j}\) a gradient field?

    Answer
    Yes since Py = Qx

    27. Find a formula for vector field \(\vecs{F}(x,y)=M(x,y)\,\hat{\mathbf i}+N(x,y)\,\hat{\mathbf j}\) given the fact that for all points \((x,y)\), \(\vecs F\) points toward the origin and \(\|\vecs F\|=\dfrac{10}{x^2+y^2}\).

    Answer
    \(\vecs{F}(x,y)=\dfrac{−10}{(x^2+y^2)^{3/2}}(x\,\hat{\mathbf i}+y\,\hat{\mathbf j})\)

    For exercises 28 - 29, assume that an electric field in the \(xy\)-plane caused by an infinite line of charge along the \(x\)-axis is a gradient field with potential function \(V(x,y)=c\ln\left(\frac{r_0}{\sqrt{x^2+y^2}}\right)\), where \(c>0\) is a constant and \(r_0\) is a reference distance at which the potential is assumed to be zero.

    28. Find the components of the electric field in the \(x\)- and \(y\)-directions, where \(\vecs E(x,y)=−\vecs ∇V(x,y).\)

    29. Show that the electric field at a point in the \(xy\)-plane is directed outward from the origin and has magnitude \(\|\vecs E\|=\dfrac{c}{r}\), where \(r=\sqrt{x^2+y^2}\).

    Answer
    \(\|\vecs E\|=\dfrac{c}{|r|^2}r=\dfrac{c}{|r|}\dfrac{r}{|r|}\)

    A flow line (or streamline) of a vector field \(\vecs F\) is a curve \(\vecs r(t)\) such that \(d\vecs{r}/dt=\vecs F(\vecs r(t))\). If \(\vecs F\) represents the velocity field of a moving particle, then the flow lines are paths taken by the particle. Therefore, flow lines are tangent to the vector field.

    For exercises 30 and 31, show that the given curve \(\vecs c(t)\) is a flow line of the given velocity vector field \(\vecs F(x,y,z)\).

    30. \(\vecs c(t)=⟨ e^{2t},\ln|t|,\frac{1}{t} ⟩,\,t≠0;\quad \vecs F(x,y,z)=⟨2x,z,−z^2⟩\)

    31. \(\vecs c(t)=⟨ \sin t,\cos t,e^t⟩;\quad \vecs F(x,y,z) =〈y,−x,z〉\)

    Answer
    \(\vecs c′(t)=⟨ \cos t,−\sin t,e^{−t}⟩=\vecs F(\vecs c(t))\)

    For exercises 32 - 34, let \(\vecs{F}=x\,\hat{\mathbf i}+y\,\hat{\mathbf j}\), \(\vecs G=−y\,\hat{\mathbf i}+x\,\hat{\mathbf j}\), and \(\vecs H=x\,\hat{\mathbf i}−y\,\hat{\mathbf j}\). Match \(\vecs F\), \(\vecs G\), and \(\vecs H\) with their graphs.

    32.

    16.1E: Exercises for Section 16.1 (9)

    33.

    16.1E: Exercises for Section 16.1 (10)

    Answer
    \(\vecs H\)

    34.

    16.1E: Exercises for Section 16.1 (11)

    For exercises 35 - 38, let \(\vecs{F}=x\,\hat{\mathbf i}+y\,\hat{\mathbf j}\), \(\vecs G=−y\,\hat{\mathbf i}+x\,\hat{\mathbf j}\), and \(\vecs H=−x\,\hat{\mathbf i}+y\,\hat{\mathbf j}\). Match the vector fields with their graphs in (I)−(IV).

    1. \(\vecs F+\vecs G\)
    2. \(\vecs F+\vecs H\)
    3. \(\vecs G+\vecs H\)
    4. \(−\vecs F+\vecs G\)

    35.

    16.1E: Exercises for Section 16.1 (12)

    Answer
    d. \(−\vecs F+\vecs G\)

    36.

    16.1E: Exercises for Section 16.1 (13)

    37.

    16.1E: Exercises for Section 16.1 (14)

    Answer
    a. \(\vecs F+\vecs G\)

    38.

    16.1E: Exercises for Section 16.1 (15)

    Contributors

    Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensedwith a CC-BY-SA-NC4.0license. Download for free at http://cnx.org.

    16.1E: Exercises for Section 16.1 (2024)

    FAQs

    How to tell if a vector field is radial or rotational? ›

    Radial fields model certain gravitational fields and energy source fields, and rotational fields model the movement of a fluid in a vortex. In a radial field, all vectors either point directly toward or directly away from the origin. Furthermore, the magnitude of any vector depends only on its distance from the origin.

    What is an example of a vector field in real life? ›

    Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout three dimensional space, such as the wind, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.

    Are radial vector fields conservative? ›

    Short Answer: The radial field F = r | r | p is conservative for regions that do not contain the origin, as the curl of the vector field F is zero.

    How to determine if a vector field is a gradient field? ›

    As we learned earlier, a vector field F is a conservative vector field, or a gradient field if there exists a scalar function f such that ∇f=F ∇ f = F .

    What makes a vector field radial? ›

    A radial vector field is a vector field where all the vectors point straight towards (f (r) < 0) or away (f (r) > 0) from the origin, and which is rotationally symmetric.

    What is the formula for the radial vector field? ›

    (b) The radial vector field F(x,y)=x2i+y2j F ( x , y ) = x 2 i + y 2 j with overlaid circles. Notice that each vector is perpendicular to the circle on which it is located.

    How to tell if a vector field is conservative? ›

    A vector field is conservative if the line integral is independent of the choice of path between two fixed endpoints. We have previously seen this is equivalent of the Field being able to be written as the gradient of a scalar potential function.

    What is the green theorem in calculus? ›

    Green's Theorem states that the line integral that is around the boundary of the plane region D can be computed as the double integral over that given region D and the path integral is traversed anti-clockwise. ∮c(Pdx + Qdy) = ∫∫D (∂Q/∂x - ∂P/∂y) dxdy.

    Is divergence a vector or scalar? ›

    The divergence of a vector field is a scalar field. The divergence is generally denoted by “div”. The divergence of a vector field can be calculated by taking the scalar product of the vector operator applied to the vector field. I.e., ∇ .

    What is the formula for the vector field? ›

    The vector field F(x,y,z)=(y/z,−x/z,0) corresponds to a rotation in three dimensions, where the vector rotates around the z-axis. This vector field is similar to the two-dimensional rotation above. In this case, since we divided by z, the magnitude of the vector field decreases as z increases.

    What does the Stokes theorem tell us? ›

    The Stoke's theorem states that “the surface integral of the curl of a function over a surface bounded by a closed surface is equal to the line integral of the particular vector function around that surface.” Where, C = A closed curve.

    How to prove a vector field is rotational? ›

    Let V be a vector field acting over R. Then V is a rotational vector field if and only if the curl of V is not everywhere zero: curlV≢0. That is, if and only if V is not conservative.

    What is rotational vs radial? ›

    Some objects have rotational symmetry, meaning that as the shape or object turns, it remains the same. Others have radial symmetry, which occurs when a line is drawn through the shape or object at any angle, but the two sides of the line remain identical.

    How do you know what direction a vector is going? ›

    We know that the slope of a line that passes through the origin and a point (x, y) is y/x. We also know that if θ is the angle made by this line, then its slope is tan θ, i.e., tan θ = y/x. Hence, θ = tan-1 (y/x). Thus, the direction of a vector (x, y) is found using the formula tan-1.

    References

    Top Articles
    Latest Posts
    Article information

    Author: Terrell Hackett

    Last Updated:

    Views: 6134

    Rating: 4.1 / 5 (52 voted)

    Reviews: 91% of readers found this page helpful

    Author information

    Name: Terrell Hackett

    Birthday: 1992-03-17

    Address: Suite 453 459 Gibson Squares, East Adriane, AK 71925-5692

    Phone: +21811810803470

    Job: Chief Representative

    Hobby: Board games, Rock climbing, Ghost hunting, Origami, Kabaddi, Mushroom hunting, Gaming

    Introduction: My name is Terrell Hackett, I am a gleaming, brainy, courageous, helpful, healthy, cooperative, graceful person who loves writing and wants to share my knowledge and understanding with you.