Rogue curves in the Davey-Stewartson I equation (2024)

Bo Yang1, Jianke Yang21 School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China
2 Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05401, U.S.A

Abstract

We report new rogue wave patterns whose wave crests form closed or open curves in the spatial plane, which we call rogue curves, in the Davey-Stewartson I equation. These rogue curves come in various striking shapes, such as rings, double rings, and many others. They emerge from a uniform background (possibly with a few lumps on it), reach high amplitude in such striking shapes, and then disappear into the same background again. We reveal that these rogue curves would arise when an internal parameter in bilinear expressions of the rogue waves is real and large. Analytically, we show that these rogue curves are predicted by root curves of certain types of double-real-variable polynomials. We compare analytical predictions of rogue curves to true solutions and demonstrate good agreement between them.

I Introduction

Evolution of a two-dimensional wave packet on water of finite depth is governed by the Benney-Roskes-Davey-Stewartson equation Benney_Roskes ; Davey_Stewartson ; Ablowitz_book . In the shallow water limit, this equation is integrable (see Ref. Ablowitz_book and the references therein). This integrable equation is sometimes just called the Davey-Stewartson (DS) equation in the literature. The DS equation is divided into two types, DSI and DSII, which correspond to the strong surface tension and weak surface tension, respectively Ablowitz_book .

Rogue waves are large spontaneous and unexpected wave excitations. They mysteriously appear from a certain background (uniform or not), rise to high amplitudes, and then retreat back to the same background again. Due to their mysterious nature, a lot of experimental work has been done on rogue waves in diverse physical systems, such as water waves PeliBook ; Tank1 ; Tank2 ; Tank3 ; Tank4 , optical waves Solli_Nature ; Wabnitz_book ; Fiber1 ; Fiber1b , plasma Plasma , Bose-Einstein condensates RogueBEC , acoustics Acoustics , etc.

Theoretically, many of such rogue waves can be described by rational solutions of certain integrable equations, such as the nonlinear Schrรถdinger (NLS) equation, the Manakov system, and so on. Those rational solutions constitute theoretical rogue waves, and their expressions have been derived in a wide variety of integrable systems, including the NLS equation Peregrine ; AAS2009 ; DGKM2010 ; KAAN2011 ; GLML2012 ; OhtaJY2012 ; PeliNLS , the Manakov system BDCW2012 ; ManakovDark ; LingGuoZhaoCNLS2014 ; Chen_Shihua2015 ; ZhaoGuoLingCNLS2016 , and many others.

Rogue waves in DSI have been studied in OhtaYangDSI . It was found that the fundamental rogue waves have wave crests in straight lines in the spatial plane. Certain higher-order rogue waves describe the nonlinear interaction of multiple fundamental rogue waves, while some other higher-order rogue waves exhibit parabola-shaped wave crests in the spatial plane.

In this paper, we report new rogue patterns whose wave crests form closed or open curves in the spatial plane, which we call rogue curves. These rogue curves come in various interesting shapes, such as rings, double rings, and many others. They arise from a uniform background (possibly with a few lumps on it), reach high amplitude in such interesting shapes, and then disappear into the same background again. We will present these rogue curves in the context of the DSI equation. Importantly, we find that such rogue curves would appear when an internal parameter in bilinear expressions of the rogue waves are real and large. Performing large-parameter asymptotic analysis, we show that these rogue curves can be predicted by root curves of certain types of double-real-variable polynomials. We compare our analytical predictions of rogue curves to true solutions and demonstrate good agreement between them.

II Preliminaries

The Davey-Stewartson-I (DSI) equation is

iโ€‹At=Axโ€‹x+Ayโ€‹y+(ฯตโ€‹|A|2โˆ’2โ€‹Q)โ€‹A,Qxโ€‹xโˆ’Qyโ€‹y=ฯตโ€‹(|A|2)xโ€‹x,isubscript๐ด๐‘กsubscript๐ด๐‘ฅ๐‘ฅsubscript๐ด๐‘ฆ๐‘ฆitalic-ฯตsuperscript๐ด22๐‘„๐ดsubscript๐‘„๐‘ฅ๐‘ฅsubscript๐‘„๐‘ฆ๐‘ฆitalic-ฯตsubscriptsuperscript๐ด2๐‘ฅ๐‘ฅ\begin{array}[]{l}\textrm{i}A_{t}=A_{xx}+A_{yy}+(\epsilon|A|^{2}-2Q)A,\\[5.0pt]Q_{xx}-Q_{yy}=\epsilon(|A|^{2})_{xx},\end{array}(1)

where ฯต=ยฑ1italic-ฯตplus-or-minus1\epsilon=\pm 1 is the sign of nonlinearity. Rogue wave solutions in this equation have been presented in OhtaYangDSI . But those solutions involve differential operators and are not explicit. Explicit expressions of those rogue waves and their proof will be presented in the appendix.

The rogue waves in the appendix (and in OhtaYangDSI ) contain various types of solutions, such as multi-rogue waves and higher-order rogue waves, depending on whether the spectral parameters in them are the same or different. In addition, those solutions contain many free internal parameters. In this article, we consider the higher-order rogue waves where all the spectral parameters are the same, and those internal free parameters are under certain restrictions. Explicit expressions of these higher-order rogue waves are much simpler. To present these solutions, we first introduce elementary Schur polynomials Snโ€‹(๐’™)subscript๐‘†๐‘›๐’™S_{n}(\mbox{\boldmath$x$}) with x=(x1,x2,โ€ฆ)xsubscript๐‘ฅ1subscript๐‘ฅ2โ€ฆ\emph{{x}}=\left(x_{1},x_{2},\ldots\right), which are defined by the generating function

โˆ‘n=0โˆžSnโ€‹(๐’™)โ€‹ฯตn=expโก(โˆ‘k=1โˆžxkโ€‹ฯตk).superscriptsubscript๐‘›0subscript๐‘†๐‘›๐’™superscriptitalic-ฯต๐‘›superscriptsubscript๐‘˜1subscript๐‘ฅ๐‘˜superscriptitalic-ฯต๐‘˜\sum_{n=0}^{\infty}S_{n}(\mbox{\boldmath$x$})\epsilon^{n}=\exp\left(\sum_{k=1}^{\infty}x_{k}\epsilon^{k}\right).(2)

We also define Sn=0subscript๐‘†๐‘›0S_{n}=0 if n<0๐‘›0n<0. Then, these higher-order rogue waves are given by the following lemma.

Lemma 1 The Davey-Stewartson I eqaution (1) admits higher-order rogue wave solutions

Aฮ›โ€‹(x,y,t)=2โ€‹gf,subscript๐ดฮ›๐‘ฅ๐‘ฆ๐‘ก2๐‘”๐‘“\displaystyle A_{\Lambda}(x,y,t)=\sqrt{2}\frac{g}{f},(3)
Qฮ›โ€‹(x,y,t)=1โˆ’2โ€‹ฯตโ€‹(logโกf)xโ€‹x,subscript๐‘„ฮ›๐‘ฅ๐‘ฆ๐‘ก12italic-ฯตsubscript๐‘“๐‘ฅ๐‘ฅ\displaystyle Q_{\Lambda}(x,y,t)=1-2\epsilon\left(\log f\right)_{xx},(4)

where ฮ›=(n1,n2,โ€ฆ,nN)ฮ›subscript๐‘›1subscript๐‘›2โ€ฆsubscript๐‘›๐‘\Lambda=(n_{1},n_{2},\dots,n_{N}) is an order-index vector, N๐‘N is the length of ฮ›ฮ›\Lambda, each nisubscript๐‘›๐‘–n_{i} is a nonnegative integer, n1<n2<โ‹ฏ<nNsubscript๐‘›1subscript๐‘›2โ‹ฏsubscript๐‘›๐‘n_{1}<n_{2}<\cdots<n_{N},

f=ฯ„0,g=ฯ„1,formulae-sequence๐‘“subscript๐œ0๐‘”subscript๐œ1f=\tau_{0},\quad g=\tau_{1},(5)
ฯ„k=det1โ‰คi,jโ‰คN(mi,j(k)),subscript๐œ๐‘˜subscriptformulae-sequence1๐‘–๐‘—๐‘superscriptsubscript๐‘š๐‘–๐‘—๐‘˜\tau_{k}=\det_{\begin{subarray}{l}1\leq i,j\leq N\end{subarray}}\left(\begin{array}[]{c}m_{i,j}^{(k)}\end{array}\right),(6)

the matrix elements mi,j(k)superscriptsubscript๐‘š๐‘–๐‘—๐‘˜m_{i,j}^{(k)} of ฯ„ksubscript๐œ๐‘˜\tau_{k} are defined by

mi,j(k)=โˆ‘ฮฝ=0minโก(ni,nj)14ฮฝโ€‹Sniโˆ’ฮฝโ€‹[x+โ€‹(k)+ฮฝโ€‹s]โ€‹Snjโˆ’ฮฝโ€‹[xโˆ’โ€‹(k)+ฮฝโ€‹s],superscriptsubscript๐‘š๐‘–๐‘—๐‘˜superscriptsubscript๐œˆ0subscript๐‘›๐‘–subscript๐‘›๐‘—1superscript4๐œˆsubscript๐‘†subscript๐‘›๐‘–๐œˆdelimited-[]superscriptx๐‘˜๐œˆssubscript๐‘†subscript๐‘›๐‘—๐œˆdelimited-[]superscriptx๐‘˜๐œˆsm_{i,j}^{(k)}=\sum_{\nu=0}^{\min(n_{i},n_{j})}\frac{1}{4^{\nu}}\hskip 1.70709ptS_{n_{i}-\nu}[\textbf{\emph{x}}^{+}(k)+\nu\textbf{\emph{s}}]\hskip 1.70709ptS_{n_{j}-\nu}[\textbf{\emph{x}}^{-}(k)+\nu\textbf{\emph{s}}],(7)

vectors xยฑโ€‹(k)=(x1ยฑ,x2ยฑ,โ‹ฏ)superscriptxplus-or-minus๐‘˜superscriptsubscript๐‘ฅ1plus-or-minussuperscriptsubscript๐‘ฅ2plus-or-minusโ‹ฏ\textbf{\emph{x}}^{\pm}(k)=\left(x_{1}^{\pm},x_{2}^{\pm},\cdots\right) are

xr+โ€‹(k)=(โˆ’1)rr!โ€‹pโ€‹xโˆ’1+(โˆ’2)rr!โ€‹p2โ€‹xโˆ’2+1r!โ€‹pโ€‹x1+2rr!โ€‹p2โ€‹x2+kโ€‹ฮดr,1+ar,superscriptsubscript๐‘ฅ๐‘Ÿ๐‘˜superscript1๐‘Ÿ๐‘Ÿ๐‘subscript๐‘ฅ1superscript2๐‘Ÿ๐‘Ÿsuperscript๐‘2subscript๐‘ฅ21๐‘Ÿ๐‘subscript๐‘ฅ1superscript2๐‘Ÿ๐‘Ÿsuperscript๐‘2subscript๐‘ฅ2๐‘˜subscript๐›ฟ๐‘Ÿ1subscript๐‘Ž๐‘Ÿ\displaystyle x_{r}^{+}(k)=\frac{(-1)^{r}}{r!p}x_{-1}+\frac{(-2)^{r}}{r!p^{2}}x_{-2}+\frac{1}{r!}px_{1}+\frac{2^{r}}{r!}p^{2}x_{2}+k\delta_{r,1}+a_{r},(8)
xrโˆ’โ€‹(k)=(โˆ’1)rr!โ€‹pโ€‹xโˆ’1+(โˆ’2)rr!โ€‹p2โ€‹x2+1r!โ€‹pโ€‹x1+2rr!โ€‹p2โ€‹xโˆ’2โˆ’kโ€‹ฮดr,1+arโˆ—,superscriptsubscript๐‘ฅ๐‘Ÿ๐‘˜superscript1๐‘Ÿ๐‘Ÿ๐‘subscript๐‘ฅ1superscript2๐‘Ÿ๐‘Ÿsuperscript๐‘2subscript๐‘ฅ21๐‘Ÿ๐‘subscript๐‘ฅ1superscript2๐‘Ÿ๐‘Ÿsuperscript๐‘2subscript๐‘ฅ2๐‘˜subscript๐›ฟ๐‘Ÿ1superscriptsubscript๐‘Ž๐‘Ÿ\displaystyle x_{r}^{-}(k)=\frac{(-1)^{r}}{r!p}x_{-1}+\frac{(-2)^{r}}{r!p^{2}}x_{2}+\frac{1}{r!}px_{1}+\frac{2^{r}}{r!}p^{2}x_{-2}-k\delta_{r,1}+a_{r}^{*},(9)
x1=12โ€‹(x+y),xโˆ’1=12โ€‹ฯตโ€‹(xโˆ’y),x2=โˆ’12โ€‹iโ€‹t,xโˆ’2=12โ€‹iโ€‹t,subscript๐‘ฅ112๐‘ฅ๐‘ฆsubscript๐‘ฅ112italic-ฯต๐‘ฅ๐‘ฆsubscript๐‘ฅ212i๐‘กsubscript๐‘ฅ212i๐‘ก\begin{array}[]{ll}x_{1}=\frac{1}{2}(x+y),&x_{-1}=\frac{1}{2}\epsilon(x-y),\\[5.0pt]x_{2}=-\frac{1}{2}\textrm{i}t,&x_{-2}=\frac{1}{2}\textrm{i}t,\end{array}(10)

p๐‘p is a real constant, ฮดr,1subscript๐›ฟ๐‘Ÿ1\delta_{r,1} is the Kronecker delta function which is equal to 1 when r=1๐‘Ÿ1r=1 and 0 otherwise, s=(0,s2,0,s4,โ‹ฏ)s0subscript๐‘ 20subscript๐‘ 4โ‹ฏ\textbf{\emph{s}}=(0,s_{2},0,s_{4},\cdots) are coefficients from the expansion

lnโก[2ฮบโ€‹tanhโกฮบ2]=โˆ‘r=1โˆžsrโ€‹ฮบr,2๐œ…๐œ…2superscriptsubscript๐‘Ÿ1subscript๐‘ ๐‘Ÿsuperscript๐œ…๐‘Ÿ\ln\left[\frac{2}{\kappa}\tanh\frac{\kappa}{2}\right]=\sum_{r=1}^{\infty}s_{r}\kappa^{r},(11)

and a1,a2,โ€ฆ,anNsubscript๐‘Ž1subscript๐‘Ž2โ€ฆsubscript๐‘Žsubscript๐‘›๐‘a_{1},a_{2},\dots,a_{n_{N}} are free complex constants.

This lemma will be derived at the end of the appendix.

The free internal parameter a1subscript๐‘Ž1a_{1} can be absorbed into (x,t)๐‘ฅ๐‘ก(x,t) or (y,t)๐‘ฆ๐‘ก(y,t) through a coordinate shift. In addition, under the variable transformation of Qโ†’Q+ฯตโ€‹|A|2,xโ†”yโ†”โ†’๐‘„๐‘„italic-ฯตsuperscript๐ด2๐‘ฅ๐‘ฆQ\rightarrow Q+\epsilon|A|^{2},\ x\leftrightarrow y, and ฯตโ†’โˆ’ฯตโ†’italic-ฯตitalic-ฯต\epsilon\rightarrow-\epsilon, the DSI equation (1) is invariant. Thus, we will set

ฯต=1,a1=0,formulae-sequenceitalic-ฯต1subscript๐‘Ž10\epsilon=1,\quad a_{1}=0,(12)

in this article without loss of generality. In addition, we denote a=(0,a2,โ€ฆ,anN)a0subscript๐‘Ž2โ€ฆsubscript๐‘Žsubscript๐‘›๐‘\textbf{\emph{a}}=(0,a_{2},\dots,a_{n_{N}}).

III Rogue curves

To demonstrate rogue curves in DSI, we first show two examples. In the first example, we choose

p=1,ฮ›=(1,4),a=(0,0,0,5000).formulae-sequence๐‘1formulae-sequenceฮ›14a0005000p=1,\quad\Lambda=(1,4),\quad\textbf{\emph{a}}=(0,0,0,5000).(13)

The corresponding solution |A|๐ด|A| from Lemma 1 at four time values of t=โˆ’3,โˆ’1,0๐‘ก310t=-3,-1,0 and 3 is shown in Fig.1. It is seen that a rogue wave in the shape of two separate curves symmetric with respect to the x๐‘ฅx-axis arise from the uniform background in the (x,y)๐‘ฅ๐‘ฆ(x,y) plane. These rogue curves reach peak amplitude of 3โ€‹2323\sqrt{2} at t=0๐‘ก0t=0, and then retreat to the same uniform background again. The shapes of these rogue curves are not parabolas but more complex, and their appearance is mysterious.

Rogue curves in the Davey-Stewartson I equation (1)

An even more interesting example comes when we choose

p=1,ฮ›=(2,3),a=(0,0,2000),formulae-sequence๐‘1formulae-sequenceฮ›23a002000p=1,\quad\Lambda=(2,3),\quad\textbf{\emph{a}}=(0,0,2000),(14)

and the corresponding solution |A|๐ด|A| from Lemma 1 at four time values of t=โˆ’4,โˆ’2,0๐‘ก420t=-4,-2,0 and 4 is shown in Fig.2. It is seen that at large times (t=ยฑ4๐‘กplus-or-minus4t=\pm 4), the solution contains two lumps on the uniform background. But at the intermediate time of t=โˆ’2๐‘ก2t=-2, a rogue wave whose crests form a closed curve in the (x,y)๐‘ฅ๐‘ฆ(x,y) plane starts to appear between the two lumps (we call this rogue closed curve a rogue ring). This rogue ring reaches peak amplitude of 3โ€‹2323\sqrt{2} at t=0๐‘ก0t=0, after which it starts to disappear and becomes invisible when t=4๐‘ก4t=4. The appearance of this rogue ring is more mysterious.

Rogue curves in the Davey-Stewartson I equation (2)

How can we understand these rogue curves? In particular, how can we analytically predict the shapes and locations of these rogue curves? This will be done in the next section.

IV Asymptotic prediction of rogue curves

It turns out that these rogue curves in the previous section can be predicted by root curves of certain types of double-real-variable polynomials. So we introduce such polynomials and their root curves first.

IV.1 Special double-real-variable polynomials and their root curves

We introduce a class of special polynomials in two real variables (z1,z2)subscript๐‘ง1subscript๐‘ง2(z_{1},z_{2}), which can be written as a determinant

๐’ซฮ›[m]โ€‹(z1,z2)=|๐’ฎn1[m]โ€‹(z1,z2)๐’ฎn1โˆ’1[m]โ€‹(z1,z2)โ‹ฏ๐’ฎn1โˆ’N+1[m]โ€‹(z1,z2)๐’ฎn2[m]โ€‹(z1,z2)๐’ฎn2โˆ’1[m]โ€‹(z1,z2)โ‹ฏ๐’ฎn2โˆ’N+1[m]โ€‹(z1,z2)โ‹ฎโ‹ฎโ‹ฎโ‹ฎ๐’ฎnN[m]โ€‹(z1,z2)๐’ฎnNโˆ’1[m]โ€‹(z1,z2)โ‹ฏ๐’ฎnNโˆ’N+1[m]โ€‹(z1,z2)|,superscriptsubscript๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2subscriptsuperscript๐’ฎdelimited-[]๐‘šsubscript๐‘›1subscript๐‘ง1subscript๐‘ง2subscriptsuperscript๐’ฎdelimited-[]๐‘šsubscript๐‘›11subscript๐‘ง1subscript๐‘ง2โ‹ฏsubscriptsuperscript๐’ฎdelimited-[]๐‘šsubscript๐‘›1๐‘1subscript๐‘ง1subscript๐‘ง2subscriptsuperscript๐’ฎdelimited-[]๐‘šsubscript๐‘›2subscript๐‘ง1subscript๐‘ง2subscriptsuperscript๐’ฎdelimited-[]๐‘šsubscript๐‘›21subscript๐‘ง1subscript๐‘ง2โ‹ฏsubscriptsuperscript๐’ฎdelimited-[]๐‘šsubscript๐‘›2๐‘1subscript๐‘ง1subscript๐‘ง2โ‹ฎโ‹ฎโ‹ฎโ‹ฎsubscriptsuperscript๐’ฎdelimited-[]๐‘šsubscript๐‘›๐‘subscript๐‘ง1subscript๐‘ง2subscriptsuperscript๐’ฎdelimited-[]๐‘šsubscript๐‘›๐‘1subscript๐‘ง1subscript๐‘ง2โ‹ฏsubscriptsuperscript๐’ฎdelimited-[]๐‘šsubscript๐‘›๐‘๐‘1subscript๐‘ง1subscript๐‘ง2\displaystyle\mathcal{P}_{\Lambda}^{[m]}(z_{1},z_{2})=\left|\begin{array}[]{cccc}\mathcal{S}^{[m]}_{n_{1}}(z_{1},z_{2})&\mathcal{S}^{[m]}_{n_{1}-1}(z_{1},z_{2})&\cdots&\mathcal{S}^{[m]}_{n_{1}-N+1}(z_{1},z_{2})\\\mathcal{S}^{[m]}_{n_{2}}(z_{1},z_{2})&\mathcal{S}^{[m]}_{n_{2}-1}(z_{1},z_{2})&\cdots&\mathcal{S}^{[m]}_{n_{2}-N+1}(z_{1},z_{2})\\\vdots&\vdots&\vdots&\vdots\\\mathcal{S}^{[m]}_{n_{N}}(z_{1},z_{2})&\mathcal{S}^{[m]}_{n_{N}-1}(z_{1},z_{2})&\cdots&\mathcal{S}^{[m]}_{n_{N}-N+1}(z_{1},z_{2})\end{array}\right|,(19)

where ๐’ฎk[m]โ€‹(z1,z2)subscriptsuperscript๐’ฎdelimited-[]๐‘š๐‘˜subscript๐‘ง1subscript๐‘ง2\mathcal{S}^{[m]}_{k}(z_{1},z_{2}) are Schur polynomials in two variables defined by

โˆ‘k=0โˆž๐’ฎk[m]โ€‹(z1,z2)โ€‹ฯตk=expโก(z2โ€‹ฯต+z1โ€‹ฯต2+ฯตm),mโ‰ฅ3,formulae-sequencesuperscriptsubscript๐‘˜0subscriptsuperscript๐’ฎdelimited-[]๐‘š๐‘˜subscript๐‘ง1subscript๐‘ง2superscriptitalic-ฯต๐‘˜subscript๐‘ง2italic-ฯตsubscript๐‘ง1superscriptitalic-ฯต2superscriptitalic-ฯต๐‘š๐‘š3\sum_{k=0}^{\infty}\mathcal{S}^{[m]}_{k}(z_{1},z_{2})\epsilon^{k}=\exp\left(z_{2}\epsilon+z_{1}\epsilon^{2}+\epsilon^{m}\right),\ \ \ m\geq 3,(20)

ฮ›=(n1,n2,โ€ฆ,nN)ฮ›subscript๐‘›1subscript๐‘›2โ€ฆsubscript๐‘›๐‘\Lambda=(n_{1},n_{2},\dots,n_{N}) is an order-index vector, and ๐’ฎk[m]โ€‹(z1,z2)โ‰ก0subscriptsuperscript๐’ฎdelimited-[]๐‘š๐‘˜subscript๐‘ง1subscript๐‘ง20\mathcal{S}^{[m]}_{k}(z_{1},z_{2})\equiv 0 if k<0๐‘˜0k<0. This determinant is a Wronskian (in z2subscript๐‘ง2z_{2}) since we can see from Eq.(20) that

โˆ‚โˆ‚z2โ€‹๐’ฎk[m]โ€‹(z1,z2)=๐’ฎkโˆ’1[m]โ€‹(z1,z2).subscript๐‘ง2subscriptsuperscript๐’ฎdelimited-[]๐‘š๐‘˜subscript๐‘ง1subscript๐‘ง2subscriptsuperscript๐’ฎdelimited-[]๐‘š๐‘˜1subscript๐‘ง1subscript๐‘ง2\frac{\partial}{\partial z_{2}}\mathcal{S}^{[m]}_{k}(z_{1},z_{2})=\mathcal{S}^{[m]}_{k-1}(z_{1},z_{2}).(21)

A few such polynomials are given below by choosing specific m๐‘šm and ฮ›ฮ›\Lambda values,

m=4,ฮ›=(1,4),๐’ซฮ›[m]โ€‹(z1,z2)=(z24+4โ€‹z1โ€‹z22โˆ’4โ€‹z12โˆ’8)/8,formulae-sequence๐‘š4formulae-sequenceฮ›14subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง2superscriptsubscript๐‘ง244subscript๐‘ง1superscriptsubscript๐‘ง224superscriptsubscript๐‘ง1288\displaystyle m=4,\Lambda=(1,4),\ \ \ \mathcal{P}^{[m]}_{\Lambda}(z_{1},z_{2})=\left(z_{2}^{4}+4z_{1}z_{2}^{2}-4z_{1}^{2}-8\right)/8,(22)
m=3,ฮ›=(2,3),๐’ซฮ›[m]โ€‹(z1,z2)=(z24+12โ€‹z12โˆ’12โ€‹z2)/12,formulae-sequence๐‘š3formulae-sequenceฮ›23subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง2superscriptsubscript๐‘ง2412superscriptsubscript๐‘ง1212subscript๐‘ง212\displaystyle m=3,\Lambda=(2,3),\ \ \ \mathcal{P}^{[m]}_{\Lambda}(z_{1},z_{2})=\left(z_{2}^{4}+12z_{1}^{2}-12z_{2}\right)/12,(23)
m=4,ฮ›=(2,4),๐’ซฮ›[m]โ€‹(z1,z2)=z2โ€‹(z24+4โ€‹z1โ€‹z22+12โ€‹z12โˆ’24)/24,formulae-sequence๐‘š4formulae-sequenceฮ›24subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง2subscript๐‘ง2superscriptsubscript๐‘ง244subscript๐‘ง1superscriptsubscript๐‘ง2212superscriptsubscript๐‘ง122424\displaystyle m=4,\Lambda=(2,4),\ \ \ \mathcal{P}^{[m]}_{\Lambda}(z_{1},z_{2})=z_{2}\left(z_{2}^{4}+4z_{1}z_{2}^{2}+12z_{1}^{2}-24\right)/24,(24)
m=5,ฮ›=(4,5),๐’ซฮ›[m]โ€‹(z1,z2)=(z28+16โ€‹z1โ€‹z26+120โ€‹z12โ€‹z24+720โ€‹z14โˆ’480โ€‹z23โˆ’2880โ€‹z1โ€‹z2)/2880.formulae-sequence๐‘š5formulae-sequenceฮ›45subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง2superscriptsubscript๐‘ง2816subscript๐‘ง1superscriptsubscript๐‘ง26120superscriptsubscript๐‘ง12superscriptsubscript๐‘ง24720superscriptsubscript๐‘ง14480superscriptsubscript๐‘ง232880subscript๐‘ง1subscript๐‘ง22880\displaystyle m=5,\Lambda=(4,5),\ \ \ \mathcal{P}^{[m]}_{\Lambda}(z_{1},z_{2})=\left(z_{2}^{8}+16z_{1}z_{2}^{6}+120z_{1}^{2}z_{2}^{4}+720z_{1}^{4}-480z_{2}^{3}-2880z_{1}z_{2}\right)/2880.(25)

By setting

๐’ซฮ›[m]โ€‹(z1,z2)=0subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง20\mathcal{P}^{[m]}_{\Lambda}(z_{1},z_{2})=0(26)

for real values of (z1,z2)subscript๐‘ง1subscript๐‘ง2(z_{1},z_{2}), we get root curves of this equation in the (z1,z2)subscript๐‘ง1subscript๐‘ง2(z_{1},z_{2}) plane. Let us denote these root curve solutions as

z2=โ„›ฮ›,mโ€‹(z1).subscript๐‘ง2subscriptโ„›ฮ›๐‘šsubscript๐‘ง1z_{2}=\mathcal{R}_{\Lambda,m}(z_{1}).(27)

For the above four examples of ๐’ซฮ›[m]โ€‹(z1,z2)subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง2\mathcal{P}^{[m]}_{\Lambda}(z_{1},z_{2}), their root curves are displayed in Fig.3. As one can see, these root curves may be an open curve, as in the first example, or a closed curve, as in the second and fourth examples, or a mixture of open and closed curves, as in the third example. For closed curves, they can be a single loop as in the second example, or a connected double loop as in the fourth example. Other varieties of these curves are also possible for other examples of ๐’ซฮ›[m]โ€‹(z1,z2)subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง2\mathcal{P}^{[m]}_{\Lambda}(z_{1},z_{2}), such as disconnected double loops and so on.

Rogue curves in the Davey-Stewartson I equation (3)

On a root curve, there may exist some special points where

โˆ‚๐’ซฮ›[m]โ€‹(z1,z2)โˆ‚z2=0.subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง2subscript๐‘ง20\frac{\partial\mathcal{P}^{[m]}_{\Lambda}(z_{1},z_{2})}{\partial z_{2}}=0.(28)

Such special points will be important to us, and we will call them exceptional points of the root curve. These exceptional points satisfy both Eqs.(26) and (28). To easily see where these exceptional points are located on a root curve, it is helpful to consider the dynamical system

dโ€‹z2dโ€‹t=๐’ซฮ›[m]โ€‹(z1,z2),๐‘‘subscript๐‘ง2๐‘‘๐‘กsubscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง2\frac{dz_{2}}{dt}=\mathcal{P}^{[m]}_{\Lambda}(z_{1},z_{2}),(29)

where z2subscript๐‘ง2z_{2} is treated as a real function of time t๐‘กt, and z1subscript๐‘ง1z_{1} is treated as a real parameter. For this dynamical system, the root curve (27) gives its bifurcation diagram, while Eq.(28) is the bifurcation condition on this diagram. From this point of view, it is then clear that the exceptional points of the root curve are the bifurcation points of this root curve (when this root curve is viewed as a bifurcation diagram). This realization then makes it very easy to identify exceptional points of the root curve. For example, on the root curve in the second panel of Fig.3, the left and right edge points of the curve are exceptional points because saddle-node bifurcations occur there (at a saddle-node bifurcation, the slope dโ€‹z2/dโ€‹z1๐‘‘subscript๐‘ง2๐‘‘subscript๐‘ง1dz_{2}/dz_{1} of the root curve is infinite). The root curve in the third panel of Fig.3 has four exceptional points. Two of them are in the lower and upper half planes where saddle-node bifurcations occur (i.e., where the slopes are infinite), while the other two are on the z1subscript๐‘ง1z_{1} axis where pitchfork bifurcations occur. The root curve in the fourth panel of Fig.3 also has four exceptional points; three of them are where saddle-node bifurcations occur, while the fourth one is at the intersection between the upper and lower loops where a transcritical bifurcation occurs. The first panel of Fig.3 does not have exceptional points since no bifurcation occurs here.

One may notice that the first two root curves in Fig.3 resemble the shapes of rogue curves in Figs.1 and 2. Indeed, the root curve of ๐’ซฮ›[m]โ€‹(z1,z2)superscriptsubscript๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2\mathcal{P}_{\Lambda}^{[m]}(z_{1},z_{2}) turns out to be closely related to certain rogue curves in DSI, as we will show in the next subsection.

IV.2 Asymptotic prediction of rogue curves under one large internal parameter

In this subsection, we analytically predict the shapes of rogue waves in DSI. For this purpose, we make the following restrictions on parameters in DSIโ€™s rogue waves in Lemma 1.

  1. 1.

    We set p=1๐‘1p=1 (the case of pโ‰ 1๐‘1p\neq 1 will be discussed in a later section).

  2. 2.

    For a certain mโ‰ฅ3๐‘š3m\geq 3, amsubscript๐‘Ž๐‘ša_{m} is real, amโ‰ซ1much-greater-thansubscript๐‘Ž๐‘š1a_{m}\gg 1 when m๐‘šm is even and |am|โ‰ซ1much-greater-thansubscript๐‘Ž๐‘š1|a_{m}|\gg 1 when m๐‘šm is odd, and the other ajsubscript๐‘Ž๐‘—a_{j} values in a are Oโ€‹(1)๐‘‚1O(1) and complex (the case of large negative amsubscript๐‘Ž๐‘ša_{m} when m๐‘šm is even will be discussed in a later section).

One may notice that the parameter choices (13)-(14) for Figs.1-2 meet these restrictions. In both cases, p=1๐‘1p=1. In addition, in (13), a=(0,0,0,5000)a0005000\textbf{\emph{a}}=(0,0,0,5000), and a4=5000subscript๐‘Ž45000a_{4}=5000 is large positive. In (14), a=(0,0,2000)a002000\textbf{\emph{a}}=(0,0,2000), and a3=2000subscript๐‘Ž32000a_{3}=2000 is large.

Under the above parameter restrictions, we will show that rogue curves in DSI would appear, and their shapes in the (x,y)๐‘ฅ๐‘ฆ(x,y) plane would be predicted by the root curves of ๐’ซฮ›[m]โ€‹(z1,z2)superscriptsubscript๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2\mathcal{P}_{\Lambda}^{[m]}(z_{1},z_{2}). To present these results, we first introduce some definitions.

Let us define a curve y=ycโ€‹(x)๐‘ฆsubscript๐‘ฆ๐‘๐‘ฅy=y_{c}(x) in the (x,y)๐‘ฅ๐‘ฆ(x,y) plane, which we call the critical curve, as

x=2โ€‹z1โ€‹am2/m,ycโ€‹(x)=z2โ€‹am1/m,formulae-sequence๐‘ฅ2subscript๐‘ง1superscriptsubscript๐‘Ž๐‘š2๐‘šsubscript๐‘ฆ๐‘๐‘ฅsubscript๐‘ง2superscriptsubscript๐‘Ž๐‘š1๐‘šx=2z_{1}a_{m}^{2/m},\ \ \ y_{c}(x)=z_{2}a_{m}^{1/m},(30)

where (z1,z2)subscript๐‘ง1subscript๐‘ง2(z_{1},z_{2}) is every point on the root curve of ๐’ซฮ›[m]โ€‹(z1,z2)superscriptsubscript๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2\mathcal{P}_{\Lambda}^{[m]}(z_{1},z_{2}). Alternatively, the critical curve can be defined by the equation

๐’ซฮ›[m]โ€‹(x2โ€‹am2/m,ycโ€‹(x)am1/m)=0,superscriptsubscript๐’ซฮ›delimited-[]๐‘š๐‘ฅ2superscriptsubscript๐‘Ž๐‘š2๐‘šsubscript๐‘ฆ๐‘๐‘ฅsuperscriptsubscript๐‘Ž๐‘š1๐‘š0\mathcal{P}_{\Lambda}^{[m]}\left(\frac{x}{2a_{m}^{2/m}},\frac{y_{c}(x)}{a_{m}^{1/m}}\right)=0,(31)

or

ycโ€‹(x)=am1/mโ€‹โ„›ฮ›,mโ€‹(x2โ€‹am2/m),subscript๐‘ฆ๐‘๐‘ฅsuperscriptsubscript๐‘Ž๐‘š1๐‘šsubscriptโ„›ฮ›๐‘š๐‘ฅ2superscriptsubscript๐‘Ž๐‘š2๐‘šy_{c}(x)=a_{m}^{1/m}\mathcal{R}_{\Lambda,m}\left(\frac{x}{{2a_{m}^{2/m}}}\right),(32)

using the notation in Eq.(27). This critical curve may also contain exceptional points where

โˆ‚โˆ‚ycโ€‹๐’ซฮ›[m]โ€‹(x2โ€‹am2/m,ycam1/m)=0.subscript๐‘ฆ๐‘superscriptsubscript๐’ซฮ›delimited-[]๐‘š๐‘ฅ2superscriptsubscript๐‘Ž๐‘š2๐‘šsubscript๐‘ฆ๐‘superscriptsubscript๐‘Ž๐‘š1๐‘š0\frac{\partial}{\partial y_{c}}\mathcal{P}_{\Lambda}^{[m]}\left(\frac{x}{2a_{m}^{2/m}},\frac{y_{c}}{a_{m}^{1/m}}\right)=0.(33)

Such points are also bifurcation points of the critical curve when this curve is viewed as a bifurcation diagram, because a dynamical system point of view similar to Eq.(29) also applies here. It is easy to see that an exceptional point (x(e),yc(e))superscript๐‘ฅ๐‘’superscriptsubscript๐‘ฆ๐‘๐‘’(x^{(e)},y_{c}^{(e)}) of the critical curve is related to an exceptional point (z1(e),z2(e))superscriptsubscript๐‘ง1๐‘’superscriptsubscript๐‘ง2๐‘’(z_{1}^{(e)},z_{2}^{(e)}) of the root curve as

x(e)=2โ€‹am2/mโ€‹z1(e),yc(e)=am1/mโ€‹z2(e).formulae-sequencesuperscript๐‘ฅ๐‘’2superscriptsubscript๐‘Ž๐‘š2๐‘šsuperscriptsubscript๐‘ง1๐‘’superscriptsubscript๐‘ฆ๐‘๐‘’superscriptsubscript๐‘Ž๐‘š1๐‘šsuperscriptsubscript๐‘ง2๐‘’x^{(e)}=2a_{m}^{2/m}z_{1}^{(e)},\quad y_{c}^{(e)}=a_{m}^{1/m}z_{2}^{(e)}.(34)

Thus, the two exceptional points are simply related by a stretching along the horizontal and vertical axes.

Under these definitions, we have the following theorem.

Theorem 1. Let Aฮ›โ€‹(x,y,t)subscript๐ดฮ›๐‘ฅ๐‘ฆ๐‘กA_{\Lambda}(x,y,t) be a DSIโ€™s rogue wave with order-index vector ฮ›=(n1,n2,โ€ฆ,nN)ฮ›subscript๐‘›1subscript๐‘›2โ€ฆsubscript๐‘›๐‘\Lambda=\left(n_{1},n_{2},\ldots,n_{N}\right) in Eq.(3) of Lemma1. Under the parameter restrictions mentioned above and when time t=๐’ชโ€‹(1)๐‘ก๐’ช1t=\mathcal{O}(1), we have the following asymptotic result on the solution Aฮ›โ€‹(x,y,t)subscript๐ดฮ›๐‘ฅ๐‘ฆ๐‘กA_{\Lambda}(x,y,t) in the (x,y)๐‘ฅ๐‘ฆ(x,y) plane for large |am|subscript๐‘Ž๐‘š|a_{m}|.

  1. 1.

    If (x,y)๐‘ฅ๐‘ฆ(x,y) is not in the Oโ€‹(1)๐‘‚1O(1) neighborhood of the critical curve y=ycโ€‹(x)๐‘ฆsubscript๐‘ฆ๐‘๐‘ฅy=y_{c}(x), then the solution Aฮ›โ€‹(x,y,t)subscript๐ดฮ›๐‘ฅ๐‘ฆ๐‘กA_{\Lambda}(x,y,t) approaches the constant background 22\sqrt{2} as |am|โ†’+โˆžโ†’subscript๐‘Ž๐‘š|a_{m}|\to+\infty.

  2. 2.

    If (x,y)๐‘ฅ๐‘ฆ(x,y) is in the Oโ€‹(1)๐‘‚1O(1) neighborhood of the critical curve y=ycโ€‹(x)๐‘ฆsubscript๐‘ฆ๐‘๐‘ฅy=y_{c}(x), but not in the Oโ€‹(1)๐‘‚1O(1) neighborhood of its exceptional points, then the solution Aฮ›โ€‹(x,y,t)subscript๐ดฮ›๐‘ฅ๐‘ฆ๐‘กA_{\Lambda}(x,y,t) at large |am|subscript๐‘Ž๐‘š|a_{m}| would asymptotically form a rogue curve ARโ€‹(x,y,t)subscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘กA_{R}(x,y,t), whose expression is

    ARโ€‹(x,y,t)=2โ€‹[1+4โ€‹iโ€‹tโˆ’1[yโˆ’ycโ€‹(x)]2+4โ€‹t2+14].subscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘ก2delimited-[]14i๐‘ก1superscriptdelimited-[]๐‘ฆsubscript๐‘ฆ๐‘๐‘ฅ24superscript๐‘ก214\displaystyle A_{R}(x,y,t)=\sqrt{2}\left[1+\frac{4{\rm{i}}t-1}{\left[y-y_{c}(x)\right]^{2}+4t^{2}+\frac{1}{4}}\right].(35)

    The error of this rogue curve approximation is Oโ€‹(amโˆ’1/m)๐‘‚superscriptsubscript๐‘Ž๐‘š1๐‘šO(a_{m}^{-1/m}). Expressed mathematically, when (x,ycโ€‹(x))๐‘ฅsubscript๐‘ฆ๐‘๐‘ฅ(x,y_{c}(x)) is not an exceptional point of the critical curve and |yโ€‹(x)โˆ’ycโ€‹(x)|=Oโ€‹(1)๐‘ฆ๐‘ฅsubscript๐‘ฆ๐‘๐‘ฅ๐‘‚1\left|y(x)-y_{c}(x)\right|=O(1), we have the following solution asymptotics

    Aฮ›โ€‹(x,y,t)=ARโ€‹(x,y,t)+Oโ€‹(|am|โˆ’1/m),|am|โ‰ซ1.formulae-sequencesubscript๐ดฮ›๐‘ฅ๐‘ฆ๐‘กsubscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘ก๐‘‚superscriptsubscript๐‘Ž๐‘š1๐‘šmuch-greater-thansubscript๐‘Ž๐‘š1A_{\Lambda}(x,y,t)=A_{R}(x,y,t)+O\left(|a_{m}|^{-1/m}\right),\quad|a_{m}|\gg 1.(36)

The proof of this theorem will be given in a later section.

Notice that ARโ€‹(x,y,t)subscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘กA_{R}(x,y,t) in Eq.(35) is the same as the Peregrine rogue wave of the nonlinear Schrรถdinger equation (along the y๐‘ฆy direction), except for a y๐‘ฆy-directional shift. The peak location of |ARโ€‹(x,y,t)|subscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘ก|A_{R}(x,y,t)| at each y๐‘ฆy value is at y=ycโ€‹(x)๐‘ฆsubscript๐‘ฆ๐‘๐‘ฅy=y_{c}(x). All these peak locations from different y๐‘ฆy values fall precisely on the critical curve y=ycโ€‹(x)๐‘ฆsubscript๐‘ฆ๐‘๐‘ฅy=y_{c}(x). Thus, we can say the critical curve y=ycโ€‹(x)๐‘ฆsubscript๐‘ฆ๐‘๐‘ฅy=y_{c}(x) predicts the spatial location of the rogue curve. The full rogue curve surrounding that critical curve is predicted by the function ARโ€‹(x,y,t)subscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘กA_{R}(x,y,t). We will compare these predictions to the true solutions of Figs.1-2 in the next section. The root curves of ๐’ซฮ›[m]โ€‹(z1,z2)superscriptsubscript๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2\mathcal{P}_{\Lambda}^{[m]}(z_{1},z_{2}) involved in Eq.(30) for those predictions are precisely the ones shown in the left two panels of Fig.3. In cases where the root curve is closed so that z1subscript๐‘ง1z_{1} of the root curve is only on a limited interval (see the second panel of Fig.3 for an example), this ARโ€‹(x,y,t)subscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘กA_{R}(x,y,t) prediction would be only for a limited x๐‘ฅx interval as well in view of Eq.(30). Outside that x๐‘ฅx interval, our prediction of Aฮ›โ€‹(x,y,t)subscript๐ดฮ›๐‘ฅ๐‘ฆ๐‘กA_{\Lambda}(x,y,t) would be the background value 22\sqrt{2} as long as (x,y)๐‘ฅ๐‘ฆ(x,y) is not in the Oโ€‹(1)๐‘‚1O(1) neighborhood of the critical curve y=ycโ€‹(x)๐‘ฆsubscript๐‘ฆ๐‘๐‘ฅy=y_{c}(x), according to the first statement of Theorem1.

The only (x,y)๐‘ฅ๐‘ฆ(x,y) places where Theorem 1 does not make a solution prediction are Oโ€‹(1)๐‘‚1O(1) neighborhoods of the exceptional points on the critical curve y=ycโ€‹(x)๐‘ฆsubscript๐‘ฆ๐‘๐‘ฅy=y_{c}(x). In such special neighborhoods, a more elaborate analysis than the ones to be employed in this article is needed in order to predict the solution behavior there.

V Comparison between analytical predictions and true solutions

In this section, we compare analytical predictions of rogue curves in Theorem 1 to true solutions.

First of all, parameter choices (13)-(14) for Figs.1-2 meet the assumptions of Theorem 1. Thus, we will compare Theorem 1โ€™s predictions on them to the true solutions shown in Figs.1-2.

For the first parameter choices (13),

m=4,am=5000,ฮ›=(1,4).formulae-sequence๐‘š4formulae-sequencesubscript๐‘Ž๐‘š5000ฮ›14m=4,\quad a_{m}=5000,\quad\Lambda=(1,4).(37)

In this case, the corresponding root curve of ๐’ซฮ›[m]โ€‹(z1,z2)superscriptsubscript๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2\mathcal{P}_{\Lambda}^{[m]}(z_{1},z_{2}) has been plotted in the first panel of Fig.3. Using that root curve, we can obtain the predicted rogue curve ARโ€‹(x,y,t)subscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘กA_{R}(x,y,t) from Eqs.(30) and (35). At four time values of t=โˆ’3,โˆ’1,0๐‘ก310t=-3,-1,0 and 3, corresponding to the time values chosen in Fig.1, this ARโ€‹(x,y,t)subscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘กA_{R}(x,y,t) prediction is plotted in Fig.4. Comparing this figure to Fig.1, we visually see that they closely match each other.

Rogue curves in the Davey-Stewartson I equation (4)

To further compare the predicted and true solutions in this case, we set x=t=0๐‘ฅ๐‘ก0x=t=0, and compare the true and predicted Aโ€‹(x,y,t)๐ด๐‘ฅ๐‘ฆ๐‘กA(x,y,t) solutions versus the y๐‘ฆy coordinate. This 1D comparison is shown in Fig.5. Again, this comparison shows very good agreement as well.

Rogue curves in the Davey-Stewartson I equation (5)

We have also verified the error decay rate of Oโ€‹(amโˆ’1/m)๐‘‚superscriptsubscript๐‘Ž๐‘š1๐‘šO(a_{m}^{-1/m}) in the neighborhood of the critical curve in Theorem1 for the rogue curve solution in Fig.1 by varying its large a4subscript๐‘Ž4a_{4} parameter and measuring the error between the prediction and the true solution. Details are omitted.

Next, we compare the true solution in Fig.2 to our prediction for the second parameter choices (14). In this case,

m=3,am=2000,ฮ›=(2,3),formulae-sequence๐‘š3formulae-sequencesubscript๐‘Ž๐‘š2000ฮ›23m=3,\quad a_{m}=2000,\quad\Lambda=(2,3),(38)

and the corresponding root curve of ๐’ซฮ›[m]โ€‹(z1,z2)superscriptsubscript๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2\mathcal{P}_{\Lambda}^{[m]}(z_{1},z_{2}) has been plotted in the second panel of Fig.3. Using that root curve, we obtain the predicted rogue curve ARโ€‹(x,y,t)subscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘กA_{R}(x,y,t) from Eqs.(30) and (35), which is a rogue ring. This ARโ€‹(x,y,t)subscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘กA_{R}(x,y,t) prediction only holds for the x๐‘ฅx interval of (2โ€‹z1,Lโ€‹am2/m,2โ€‹z1,Rโ€‹am2/m)2subscript๐‘ง1๐ฟsuperscriptsubscript๐‘Ž๐‘š2๐‘š2subscript๐‘ง1๐‘…superscriptsubscript๐‘Ž๐‘š2๐‘š\left(2z_{1,L}a_{m}^{2/m},2z_{1,R}a_{m}^{2/m}\right), where (z1,L,z1,R)subscript๐‘ง1๐ฟsubscript๐‘ง1๐‘…(z_{1,L},z_{1,R}) is the z1subscript๐‘ง1z_{1} interval of the underlying root curve in the second panel of Fig.3. For this root curve, z1,R=โˆ’z1,L=32/3/2โ‰ˆ1.0400subscript๐‘ง1๐‘…subscript๐‘ง1๐ฟsuperscript32321.0400z_{1,R}=-z_{1,L}=3^{2/3}/2\approx 1.0400. Thus, the x๐‘ฅx interval of this ARโ€‹(x,y,t)subscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘กA_{R}(x,y,t) prediction is |x|<60002/3โ‰ˆ330.19๐‘ฅsuperscript600023330.19|x|<6000^{2/3}\approx 330.19. Outside this x๐‘ฅx interval, we will use the uniform background 22\sqrt{2} prediction for Aฮ›โ€‹(x,y,t)subscript๐ดฮ›๐‘ฅ๐‘ฆ๐‘กA_{\Lambda}(x,y,t) according to the first statement of Theorem 1. At four time values of t=โˆ’4,โˆ’2,0๐‘ก420t=-4,-2,0 and 4, corresponding to the time values chosen in Fig.2, this rogue-ring ARโ€‹(x,y,t)subscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘กA_{R}(x,y,t) prediction is plotted in Fig.6. Note that in this example, the critical curve y=ycโ€‹(x)๐‘ฆsubscript๐‘ฆ๐‘๐‘ฅy=y_{c}(x) contains two exceptional points, which correspond to the left and right edge points of the rogue ring seen in the second and third panels of Fig.6. According to Theorem 1, our predicted solutions in all four panels of Fig.6 are not expected to be valid in the Oโ€‹(1)๐‘‚1O(1) neighborhoods of those edge points.

Comparing our predicted solution in Fig.6 to the true one in Fig.2, we visually see that the predicted rogue ring closely matches the true one in its shape and location. We have checked that the amplitudes on the predicted rogue ring closely match those on the true ring as well. For instance, at x=t=0๐‘ฅ๐‘ก0x=t=0, we have quantitatively compared the predicted and true Aโ€‹(x,y,t)๐ด๐‘ฅ๐‘ฆ๐‘กA(x,y,t) solutions versus y๐‘ฆy, similar to what we have done in Fig.5 for the first example. We have found close agreement between prediction and the true solution in that 1D comparison (details of this 1D comparison are omitted for brevity).

Rogue curves in the Davey-Stewartson I equation (6)

The predicted solution in Fig.6 and the true one in Fig.2 also have notable differences though, and those differences are mostly at or near the left and right edges of the rogue ring. At those edges, the true solution shows a lump there, which is very narrow and hardly visible at t=0๐‘ก0t=0 but becomes wider and more visible as |t|๐‘ก|t| increases. The predicted solution, however, does not exhibit such lumps. The reason for this difference is clearly due to the fact that those edge points are exceptional points of the critical curve, where our predicted solution does not hold according to Theorem 1. So, there are no contradictions between the analytical theory and the true solution here.

Next, we will do comparisons on two additional examples. The third example is where the parameter choices are

p=1,ฮ›=(2,4),a=(0,1,2โ€‹i,5000).formulae-sequence๐‘1formulae-sequenceฮ›24a012i5000p=1,\quad\Lambda=(2,4),\quad\textbf{\emph{a}}=(0,1,2{\rm{i}},5000).(39)

The corresponding true solution |A|๐ด|A| at four time values of t=โˆ’3,โˆ’1,0๐‘ก310t=-3,-1,0 and 3 is plotted in the upper row of Fig.7. It is seen that a rogue curve in the shape of a heart intersected by a line arises from a uniform background with four lumps on it. This rogue curve reaches peak amplitude at approximately t=0๐‘ก0t=0 and then fades away to that same background afterwards.

Rogue curves in the Davey-Stewartson I equation (7)

To compare this true solution to our prediction, we notice from Eq.(39) that m=4๐‘š4m=4 here since a4=5000subscript๐‘Ž45000a_{4}=5000, which is the large parameter. The corresponding root curve for ๐’ซฮ›[m]โ€‹(z1,z2)superscriptsubscript๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2\mathcal{P}_{\Lambda}^{[m]}(z_{1},z_{2}), with m=4๐‘š4m=4 and ฮ›=(2,4)ฮ›24\Lambda=(2,4), has been plotted in the third panel of Fig.3. Using that root curve and the a4subscript๐‘Ž4a_{4} value, we obtain the predicted rogue curve ARโ€‹(x,y,t)subscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘กA_{R}(x,y,t) from Eqs.(30) and (35), which is plotted in the lower row of Fig.7 at the same time values of the upper row. It is seen that the prediction matches the true solution pretty well. The main differences between them are at the four lumps, which are clearly at the exceptional points of the critical curve where the prediction in Theorem 1 does not hold. Thus such differences are not surprising.

The fourth example we examine is where the parameter choices are

p=1,ฮ›=(4,5),a=(0,i,2โ€‹i,3โ€‹i,20000).formulae-sequence๐‘1formulae-sequenceฮ›45a0i2i3i20000p=1,\quad\Lambda=(4,5),\quad\textbf{\emph{a}}=(0,{\rm{i}},2{\rm{i}},3{\rm{i}},20000).(40)

The corresponding true solution |A|๐ด|A| at three time values of t=โˆ’2,0๐‘ก20t=-2,0 and 2 is plotted in the first three panels of Fig.8. This time, a double rogue ring in a knot configuration arises from a uniform background with four lumps on it. This rogue curve reaches peak amplitude at approximately t=0๐‘ก0t=0 and then fades away to that same background afterwards.

Rogue curves in the Davey-Stewartson I equation (8)

To compare this true solution to our prediction, we see from Eq.(40) that m=5๐‘š5m=5 since a5=20000subscript๐‘Ž520000a_{5}=20000 is large here. The corresponding root curve for ๐’ซฮ›[m]โ€‹(z1,z2)superscriptsubscript๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2\mathcal{P}_{\Lambda}^{[m]}(z_{1},z_{2}), with m=5๐‘š5m=5 and ฮ›=(4,5)ฮ›45\Lambda=(4,5), has been plotted in the last panel of Fig.3. Using that root curve and the a5subscript๐‘Ž5a_{5} value, the critical curve y=ycโ€‹(x)๐‘ฆsubscript๐‘ฆ๐‘๐‘ฅy=y_{c}(x) for this case can be obtained, which is shown in the last panel of Fig.8. As we have mentioned earlier, the critical curve y=ycโ€‹(x)๐‘ฆsubscript๐‘ฆ๐‘๐‘ฅy=y_{c}(x) predicts the spatial location of the rogue curve. When we compare this critical curve to the spatial location of the true rogue curve in the second panel of Fig.8, they again match each other very well. The four lumps in the true solution are at the exceptional points of the critical curve, where Theorem 1 does not give an analytical prediction.

VI Proof of analytical predictions in Theorem 1

In this section, we prove the analytical predictions in Theorem1. Since ฯต=p=1italic-ฯต๐‘1\epsilon=p=1 and a1=0subscript๐‘Ž10a_{1}=0, we see from Lemma 1 that

x1ยฑโ€‹(k)=yโˆ“2โ€‹iโ€‹tยฑk,x2+=12โ€‹x+a2,x2โˆ’=(x2+)โˆ—,x3+=16โ€‹yโˆ’43โ€‹iโ€‹t+a3,x3โˆ’=(x3+)โˆ—,formulae-sequencesuperscriptsubscript๐‘ฅ1plus-or-minus๐‘˜plus-or-minusminus-or-plus๐‘ฆ2i๐‘ก๐‘˜formulae-sequencesuperscriptsubscript๐‘ฅ212๐‘ฅsubscript๐‘Ž2formulae-sequencesuperscriptsubscript๐‘ฅ2superscriptsuperscriptsubscript๐‘ฅ2formulae-sequencesuperscriptsubscript๐‘ฅ316๐‘ฆ43i๐‘กsubscript๐‘Ž3superscriptsubscript๐‘ฅ3superscriptsuperscriptsubscript๐‘ฅ3x_{1}^{\pm}(k)=y\mp 2\textrm{i}t\pm k,\quad x_{2}^{+}=\frac{1}{2}x+a_{2},\quad x_{2}^{-}=(x_{2}^{+})^{*},\quad x_{3}^{+}=\frac{1}{6}y-\frac{4}{3}\textrm{i}t+a_{3},\quad x_{3}^{-}=(x_{3}^{+})^{*},(41)

and so on. According to the assumptions of Theorem 1, for a certain integer mโ‰ฅ3๐‘š3m\geq 3, amsubscript๐‘Ž๐‘ša_{m} is real, amโ‰ซ1much-greater-thansubscript๐‘Ž๐‘š1a_{m}\gg 1 when m๐‘šm is even and |am|โ‰ซ1much-greater-thansubscript๐‘Ž๐‘š1|a_{m}|\gg 1 when m๐‘šm is odd, and the other ajsubscript๐‘Ž๐‘—a_{j} values in a are Oโ€‹(1)๐‘‚1O(1) and complex. Suppose x=Oโ€‹(am2/m)๐‘ฅ๐‘‚superscriptsubscript๐‘Ž๐‘š2๐‘šx=O(a_{m}^{2/m}), y=Oโ€‹(am1/m)๐‘ฆ๐‘‚superscriptsubscript๐‘Ž๐‘š1๐‘šy=O(a_{m}^{1/m}), t=Oโ€‹(1)๐‘ก๐‘‚1t=O(1), and denote

x=2โ€‹z1โ€‹am2/m,y=z2โ€‹am1/m,formulae-sequence๐‘ฅ2subscript๐‘ง1superscriptsubscript๐‘Ž๐‘š2๐‘š๐‘ฆsubscript๐‘ง2superscriptsubscript๐‘Ž๐‘š1๐‘šx=2z_{1}a_{m}^{2/m},\quad y=z_{2}a_{m}^{1/m},(42)

where z1subscript๐‘ง1z_{1} and z2subscript๐‘ง2z_{2} are Oโ€‹(1)๐‘‚1O(1) and both real since am1/msuperscriptsubscript๐‘Ž๐‘š1๐‘ša_{m}^{1/m} is real due to the above assumptions on amsubscript๐‘Ž๐‘ša_{m}. In this case,

Snโ€‹[x+โ€‹(k)+ฮฝโ€‹s]=Snโ€‹(yโˆ’2โ€‹iโ€‹t+k,12โ€‹x+ฮฝโ€‹s2+a2,โ‹ฏ)โˆผSnโ€‹(y,12โ€‹x,0,โ‹ฏ,0,am,0,โ‹ฏ)subscript๐‘†๐‘›delimited-[]superscriptx๐‘˜๐œˆssubscript๐‘†๐‘›๐‘ฆ2i๐‘ก๐‘˜12๐‘ฅ๐œˆsubscript๐‘ 2subscript๐‘Ž2โ‹ฏsimilar-tosubscript๐‘†๐‘›๐‘ฆ12๐‘ฅ0โ‹ฏ0subscript๐‘Ž๐‘š0โ‹ฏ\displaystyle S_{n}\left[\textbf{\emph{x}}^{+}(k)+\nu\textbf{\emph{s}}\right]=S_{n}(y-2\textrm{i}t+k,\ \frac{1}{2}x+\nu s_{2}+a_{2},\cdots)\sim S_{n}(y,\frac{1}{2}x,0,\cdots,0,a_{m},0,\cdots)
=amn/mโ€‹Snโ€‹(yโ€‹amโˆ’1/m,12โ€‹xโ€‹amโˆ’2/m,0,โ‹ฏ,0,1,0,โ‹ฏ)=amn/mโ€‹Snโ€‹(z2,z1,0,โ‹ฏ,0,1,0,โ‹ฏ).absentsuperscriptsubscript๐‘Ž๐‘š๐‘›๐‘šsubscript๐‘†๐‘›๐‘ฆsuperscriptsubscript๐‘Ž๐‘š1๐‘š12๐‘ฅsuperscriptsubscript๐‘Ž๐‘š2๐‘š0โ‹ฏ010โ‹ฏsuperscriptsubscript๐‘Ž๐‘š๐‘›๐‘šsubscript๐‘†๐‘›subscript๐‘ง2subscript๐‘ง10โ‹ฏ010โ‹ฏ\displaystyle=a_{m}^{n/m}S_{n}\left(ya_{m}^{-1/m},\frac{1}{2}xa_{m}^{-2/m},0,\cdots,0,1,0,\cdots\right)=a_{m}^{n/m}S_{n}\left(z_{2},z_{1},0,\cdots,0,1,0,\cdots\right).

Recall from the definition of Schur polynomials (2) that

Snโ€‹(z2,z1,0,โ‹ฏ,0,1,0,โ‹ฏ)=๐’ฎn[m]โ€‹(z1,z2),subscript๐‘†๐‘›subscript๐‘ง2subscript๐‘ง10โ‹ฏ010โ‹ฏsubscriptsuperscript๐’ฎdelimited-[]๐‘š๐‘›subscript๐‘ง1subscript๐‘ง2S_{n}\left(z_{2},z_{1},0,\cdots,0,1,0,\cdots\right)=\mathcal{S}^{[m]}_{n}(z_{1},z_{2}),(43)

where ๐’ฎn[m]โ€‹(z1,z2)subscriptsuperscript๐’ฎdelimited-[]๐‘š๐‘›subscript๐‘ง1subscript๐‘ง2\mathcal{S}^{[m]}_{n}(z_{1},z_{2}) is as defined in Eq.(20). Thus,

Snโ€‹[x+โ€‹(k)+ฮฝโ€‹s]โˆผamn/mโ€‹๐’ฎn[m]โ€‹(z1,z2),|am|โ‰ซ1.formulae-sequencesimilar-tosubscript๐‘†๐‘›delimited-[]superscriptx๐‘˜๐œˆssuperscriptsubscript๐‘Ž๐‘š๐‘›๐‘šsubscriptsuperscript๐’ฎdelimited-[]๐‘š๐‘›subscript๐‘ง1subscript๐‘ง2much-greater-thansubscript๐‘Ž๐‘š1S_{n}\left[\textbf{\emph{x}}^{+}(k)+\nu\textbf{\emph{s}}\right]\sim a_{m}^{n/m}\mathcal{S}^{[m]}_{n}(z_{1},z_{2}),\quad|a_{m}|\gg 1.(44)

Similarly, we can also show that

Snโ€‹[xโˆ’โ€‹(k)+ฮฝโ€‹s]โˆผamn/mโ€‹๐’ฎn[m]โ€‹(z1,z2),|am|โ‰ซ1.formulae-sequencesimilar-tosubscript๐‘†๐‘›delimited-[]superscriptx๐‘˜๐œˆssuperscriptsubscript๐‘Ž๐‘š๐‘›๐‘šsubscriptsuperscript๐’ฎdelimited-[]๐‘š๐‘›subscript๐‘ง1subscript๐‘ง2much-greater-thansubscript๐‘Ž๐‘š1S_{n}\left[\textbf{\emph{x}}^{-}(k)+\nu\textbf{\emph{s}}\right]\sim a_{m}^{n/m}\mathcal{S}^{[m]}_{n}(z_{1},z_{2}),\quad|a_{m}|\gg 1.(45)

Now, we rewrite the determinant ฯ„ksubscript๐œ๐‘˜\tau_{k} in Eq.(6) as a larger (N+nN+1)ร—(N+nN+1)๐‘subscript๐‘›๐‘1๐‘subscript๐‘›๐‘1(N+n_{N}+1)\times(N+n_{N}+1) determinant

ฯ„k=|ONร—NฮฆNร—(nN+1)โˆ’ฮจ(nN+1)ร—NI(nN+1)ร—(nN+1)|,subscript๐œ๐‘˜subscriptO๐‘๐‘subscriptฮฆ๐‘subscript๐‘›๐‘1subscriptฮจsubscript๐‘›๐‘1๐‘subscriptIsubscript๐‘›๐‘1subscript๐‘›๐‘1\tau_{k}=\left|\begin{array}[]{cc}\textbf{O}_{N\times N}&\Phi_{N\times(n_{N}+1)}\\-\Psi_{(n_{N}+1)\times N}&\textbf{I}_{(n_{N}+1)\times(n_{N}+1)}\end{array}\right|,(46)

where

ฮฆi,j=2โˆ’(jโˆ’1)โ€‹Sni+1โˆ’jโ€‹(x+โ€‹(k)+(jโˆ’1)โ€‹s),ฮจi,j=2โˆ’(iโˆ’1)โ€‹Snj+1โˆ’iโ€‹(xโˆ’โ€‹(k)+(iโˆ’1)โ€‹s),formulae-sequencesubscriptฮฆ๐‘–๐‘—superscript2๐‘—1subscript๐‘†subscript๐‘›๐‘–1๐‘—superscriptx๐‘˜๐‘—1ssubscriptฮจ๐‘–๐‘—superscript2๐‘–1subscript๐‘†subscript๐‘›๐‘—1๐‘–superscriptx๐‘˜๐‘–1s\Phi_{i,j}=2^{-(j-1)}S_{n_{i}+1-j}\left(\textbf{\emph{x}}^{+}(k)+(j-1)\textbf{\emph{s}}\right),\quad\Psi_{i,j}=2^{-(i-1)}S_{n_{j}+1-i}\left(\textbf{\emph{x}}^{-}(k)+(i-1)\textbf{\emph{s}}\right),(47)

and vectors xยฑโ€‹(k)superscriptxplus-or-minus๐‘˜\textbf{\emph{x}}^{\pm}(k) and s are as defined in Lemma 1. Using Laplace expansion, this larger determinant (46) can be rewritten as

ฯ„k=โˆ‘0โ‰คฮฝ1<ฮฝ2<โ‹ฏ<ฮฝNโ‰คnNdet1โ‰คi,jโ‰คN(12ฮฝjโ€‹Sniโˆ’ฮฝjโ€‹(x+โ€‹(k)+ฮฝjโ€‹s))ร—det1โ‰คi,jโ‰คN(12ฮฝjโ€‹Sniโˆ’ฮฝjโ€‹(xโˆ’โ€‹(k)+ฮฝjโ€‹s)).subscript๐œ๐‘˜subscript0subscript๐œˆ1subscript๐œˆ2โ‹ฏsubscript๐œˆ๐‘subscript๐‘›๐‘subscriptformulae-sequence1๐‘–๐‘—๐‘1superscript2subscript๐œˆ๐‘—subscript๐‘†subscript๐‘›๐‘–subscript๐œˆ๐‘—superscriptx๐‘˜subscript๐œˆ๐‘—ssubscriptformulae-sequence1๐‘–๐‘—๐‘1superscript2subscript๐œˆ๐‘—subscript๐‘†subscript๐‘›๐‘–subscript๐œˆ๐‘—superscriptx๐‘˜subscript๐œˆ๐‘—s\displaystyle\tau_{k}=\sum_{0\leq\nu_{1}<\nu_{2}<\cdots<\nu_{N}\leq n_{N}}\det_{1\leq i,j\leq N}\left(\frac{1}{2^{\nu_{j}}}S_{n_{i}-\nu_{j}}({\textbf{\emph{x}}}^{+}(k)+\nu_{j}\textbf{\emph{s}})\right)\times\det_{1\leq i,j\leq N}\left(\frac{1}{2^{\nu_{j}}}S_{n_{i}-\nu_{j}}({\textbf{\emph{x}}}^{-}(k)+\nu_{j}\textbf{\emph{s}})\right).(48)

The highest power term of amsubscript๐‘Ž๐‘ša_{m} in ฯ„ksubscript๐œ๐‘˜\tau_{k} comes from the index choices of ฮฝj=jโˆ’1subscript๐œˆ๐‘—๐‘—1\nu_{j}=j-1. Then, using Eqs.(44)-(45), we can readily show that the highest amsubscript๐‘Ž๐‘ša_{m}-power term of ฯ„ksubscript๐œ๐‘˜\tau_{k} is

ฯ„kโˆผ2โˆ’Nโ€‹(Nโˆ’1)โ€‹am2โ€‹ฮฒโ€‹[๐’ซฮ›[m]โ€‹(z1,z2)]2,|am|โ‰ซ1,formulae-sequencesimilar-tosubscript๐œ๐‘˜superscript2๐‘๐‘1superscriptsubscript๐‘Ž๐‘š2๐›ฝsuperscriptdelimited-[]subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง22much-greater-thansubscript๐‘Ž๐‘š1\tau_{k}\sim 2^{-N(N-1)}\hskip 1.42271pta_{m}^{2\beta}\left[\mathcal{P}^{[m]}_{\Lambda}(z_{1},z_{2})\right]^{2},\quad\quad|a_{m}|\gg 1,(49)

where ๐’ซฮ›[m]โ€‹(z1,z2)subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง2\mathcal{P}^{[m]}_{\Lambda}(z_{1},z_{2}) is the double-real-variable polynomial defined in Eq.(19), and ฮฒ=(n1+n2+โ‹ฏ+nNโˆ’Nโ€‹(Nโˆ’1)/2)/m๐›ฝsubscript๐‘›1subscript๐‘›2โ‹ฏsubscript๐‘›๐‘๐‘๐‘12๐‘š\beta=(n_{1}+n_{2}+\dots+n_{N}-N(N-1)/2)/m. Inserting this leading-order term of ฯ„ksubscript๐œ๐‘˜\tau_{k} into Eq.(3), we see that the solution Aฮ›โ€‹(x,y,t)subscript๐ดฮ›๐‘ฅ๐‘ฆ๐‘กA_{\Lambda}(x,y,t) approaches 22\sqrt{2} when |am|โ†’โˆžโ†’subscript๐‘Ž๐‘š|a_{m}|\to\infty, except at or near (x,y)๐‘ฅ๐‘ฆ(x,y) locations where

๐’ซฮ›[m]โ€‹(z1,z2)=0,subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง20\mathcal{P}^{[m]}_{\Lambda}(z_{1},z_{2})=0,(50)

or equivalently,

๐’ซฮ›[m]โ€‹(x2โ€‹am2/m,yam1/m)=0superscriptsubscript๐’ซฮ›delimited-[]๐‘š๐‘ฅ2superscriptsubscript๐‘Ž๐‘š2๐‘š๐‘ฆsuperscriptsubscript๐‘Ž๐‘š1๐‘š0\mathcal{P}_{\Lambda}^{[m]}\left(\frac{x}{2a_{m}^{2/m}},\frac{y}{a_{m}^{1/m}}\right)=0(51)

in view of the connection (42) between (z1,z2)subscript๐‘ง1subscript๐‘ง2(z_{1},z_{2}) and (x,y)๐‘ฅ๐‘ฆ(x,y). The (x,y)๐‘ฅ๐‘ฆ(x,y) locations where Eq.(51) holds are the critical curve y=ycโ€‹(x)๐‘ฆsubscript๐‘ฆ๐‘๐‘ฅy=y_{c}(x) as defined earlier in Eqs.(31)-(32). Thus, if (x,y)๐‘ฅ๐‘ฆ(x,y) is not in the Oโ€‹(1)๐‘‚1O(1) neighborhood of this critical curve, the solution Aฮ›โ€‹(x,y,t)subscript๐ดฮ›๐‘ฅ๐‘ฆ๐‘กA_{\Lambda}(x,y,t) approaches 22\sqrt{2} for |am|โ‰ซ1much-greater-thansubscript๐‘Ž๐‘š1|a_{m}|\gg 1.

Next, we analyze the solution asymptotics in the Oโ€‹(1)๐‘‚1O(1) neighborhood of the critical curve. For this purpose, we denote y=yc+y^๐‘ฆsubscript๐‘ฆ๐‘^๐‘ฆy=y_{c}+\hat{y}, where y^=Oโ€‹(1)^๐‘ฆ๐‘‚1\hat{y}=O(1). Then, a more refined asymptotics for Snโ€‹[x+โ€‹(k)+ฮฝโ€‹s]subscript๐‘†๐‘›delimited-[]superscriptx๐‘˜๐œˆsS_{n}\left[\textbf{\emph{x}}^{+}(k)+\nu\textbf{\emph{s}}\right] is

Snโ€‹[x+โ€‹(k)+ฮฝโ€‹s]=Snโ€‹(yโˆ’2โ€‹iโ€‹t+k,12โ€‹x+ฮฝโ€‹s2+a2,โ‹ฏ)=Snโ€‹(yc+y^โˆ’2โ€‹iโ€‹t+k,12โ€‹x,0,โ€ฆ,0,am,0,โ€ฆ)โ€‹[1+๐’ชโ€‹(amโˆ’2/m)]subscript๐‘†๐‘›delimited-[]superscriptx๐‘˜๐œˆssubscript๐‘†๐‘›๐‘ฆ2i๐‘ก๐‘˜12๐‘ฅ๐œˆsubscript๐‘ 2subscript๐‘Ž2โ‹ฏsubscript๐‘†๐‘›subscript๐‘ฆ๐‘^๐‘ฆ2i๐‘ก๐‘˜12๐‘ฅ0โ€ฆ0subscript๐‘Ž๐‘š0โ€ฆdelimited-[]1๐’ชsuperscriptsubscript๐‘Ž๐‘š2๐‘š\displaystyle S_{n}\left[\textbf{\emph{x}}^{+}(k)+\nu\textbf{\emph{s}}\right]=S_{n}(y-2\textrm{i}t+k,\ \frac{1}{2}x+\nu s_{2}+a_{2},\cdots)=S_{n}(y_{c}+\hat{y}-2\textrm{i}t+k,\ \frac{1}{2}x,0,\dots,0,a_{m},0,\dots)\left[1+\mathcal{O}(a_{m}^{-2/m})\right]
=amn/mโ€‹Snโ€‹[ycโ€‹amโˆ’1/m+(y^โˆ’2โ€‹iโ€‹t+k)โ€‹amโˆ’1/m,12โ€‹xโ€‹amโˆ’2/m,0,โ‹ฏ,0,1,0,โ‹ฏ]โ€‹[1+๐’ชโ€‹(amโˆ’2/m)]absentsuperscriptsubscript๐‘Ž๐‘š๐‘›๐‘šsubscript๐‘†๐‘›subscript๐‘ฆ๐‘superscriptsubscript๐‘Ž๐‘š1๐‘š^๐‘ฆ2i๐‘ก๐‘˜superscriptsubscript๐‘Ž๐‘š1๐‘š12๐‘ฅsuperscriptsubscript๐‘Ž๐‘š2๐‘š0โ‹ฏ010โ‹ฏdelimited-[]1๐’ชsuperscriptsubscript๐‘Ž๐‘š2๐‘š\displaystyle=a_{m}^{n/m}S_{n}\left[y_{c}a_{m}^{-1/m}+(\hat{y}-2\textrm{i}t+k)a_{m}^{-1/m},\frac{1}{2}xa_{m}^{-2/m},0,\cdots,0,1,0,\cdots\right]\left[1+\mathcal{O}(a_{m}^{-2/m})\right]
=amn/mโ€‹Snโ€‹[z2+(y^โˆ’2โ€‹iโ€‹t+k)โ€‹amโˆ’1/m,z1,0,โ‹ฏ,0,1,0,โ‹ฏ]โ€‹[1+๐’ชโ€‹(amโˆ’2/m)].absentsuperscriptsubscript๐‘Ž๐‘š๐‘›๐‘šsubscript๐‘†๐‘›subscript๐‘ง2^๐‘ฆ2i๐‘ก๐‘˜superscriptsubscript๐‘Ž๐‘š1๐‘šsubscript๐‘ง10โ‹ฏ010โ‹ฏdelimited-[]1๐’ชsuperscriptsubscript๐‘Ž๐‘š2๐‘š\displaystyle=a_{m}^{n/m}S_{n}\left[z_{2}+(\hat{y}-2\textrm{i}t+k)a_{m}^{-1/m},z_{1},0,\cdots,0,1,0,\cdots\right]\left[1+\mathcal{O}(a_{m}^{-2/m})\right].(52)

Here, the point (z1,z2)subscript๐‘ง1subscript๐‘ง2(z_{1},z_{2}) is on the root curve of ๐’ซฮ›[m]โ€‹(z1,z2)=0subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง20\mathcal{P}^{[m]}_{\Lambda}(z_{1},z_{2})=0.

Now, we collect the dominant contributions in the Laplace expansion (48) for ฯ„ksubscript๐œ๐‘˜\tau_{k} near the critical curve. There are two sources of contributions which are of the same order in amsubscript๐‘Ž๐‘ša_{m}, one from the index choices of ฮฝj=jโˆ’1subscript๐œˆ๐‘—๐‘—1\nu_{j}=j-1, and the other from the index choices of (ฮฝ1,โ€ฆ,ฮฝN)=(0,1,โ€ฆ,Nโˆ’2,N)subscript๐œˆ1โ€ฆsubscript๐œˆ๐‘01โ€ฆ๐‘2๐‘(\nu_{1},\dots,\nu_{N})=(0,1,\dots,N-2,N). For the first index choice, using the above asymptotics of Snโ€‹[x+โ€‹(k)+ฮฝโ€‹s]subscript๐‘†๐‘›delimited-[]superscriptx๐‘˜๐œˆsS_{n}\left[\textbf{\emph{x}}^{+}(k)+\nu\textbf{\emph{s}}\right], we get

det1โ‰คi,jโ‰คN(12ฮฝjโ€‹Sniโˆ’ฮฝjโ€‹(x+โ€‹(k)+ฮฝjโ€‹s))|ฮฝj=jโˆ’1=2โˆ’Nโ€‹(Nโˆ’1)/2โ€‹amฮฒโ€‹๐’ซฮ›[m]โ€‹(z1,z2+(y^โˆ’2โ€‹iโ€‹t+k)โ€‹amโˆ’1/m)โ€‹[1+๐’ชโ€‹(amโˆ’2/m)]evaluated-atsubscriptformulae-sequence1๐‘–๐‘—๐‘1superscript2subscript๐œˆ๐‘—subscript๐‘†subscript๐‘›๐‘–subscript๐œˆ๐‘—superscriptx๐‘˜subscript๐œˆ๐‘—ssubscript๐œˆ๐‘—๐‘—1superscript2๐‘๐‘12superscriptsubscript๐‘Ž๐‘š๐›ฝsubscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง2^๐‘ฆ2i๐‘ก๐‘˜superscriptsubscript๐‘Ž๐‘š1๐‘šdelimited-[]1๐’ชsuperscriptsubscript๐‘Ž๐‘š2๐‘š\displaystyle\left.\det_{1\leq i,j\leq N}\left(\frac{1}{2^{\nu_{j}}}S_{n_{i}-\nu_{j}}({\textbf{\emph{x}}}^{+}(k)+\nu_{j}\textbf{\emph{s}})\right)\right|_{\nu_{j}=j-1}=2^{-N(N-1)/2}\hskip 1.42271pta_{m}^{\beta}\mathcal{P}^{[m]}_{\Lambda}\left(z_{1},z_{2}+(\hat{y}-2\textrm{i}t+k)a_{m}^{-1/m}\right)\left[1+\mathcal{O}(a_{m}^{-2/m})\right]
=2โˆ’Nโ€‹(Nโˆ’1)/2โ€‹amฮฒโ€‹[๐’ซฮ›[m]โ€‹(z1,z2)+โˆ‚๐’ซฮ›โ€‹(z1,z2)โˆ‚z2โ€‹(y^โˆ’2โ€‹iโ€‹t+k)โ€‹amโˆ’1/m+โ‹ฏ]โ€‹[1+๐’ชโ€‹(amโˆ’2/m)],absentsuperscript2๐‘๐‘12superscriptsubscript๐‘Ž๐‘š๐›ฝdelimited-[]subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง2subscript๐’ซฮ›subscript๐‘ง1subscript๐‘ง2subscript๐‘ง2^๐‘ฆ2i๐‘ก๐‘˜superscriptsubscript๐‘Ž๐‘š1๐‘šโ‹ฏdelimited-[]1๐’ชsuperscriptsubscript๐‘Ž๐‘š2๐‘š\displaystyle=2^{-N(N-1)/2}\hskip 1.42271pta_{m}^{\beta}\left[\mathcal{P}^{[m]}_{\Lambda}\left(z_{1},z_{2}\right)+\frac{\partial\mathcal{P}_{\Lambda}\left(z_{1},z_{2}\right)}{\partial z_{2}}\left(\hat{y}-2\textrm{i}t+k\right)a_{m}^{-1/m}+\cdots\right]\left[1+\mathcal{O}(a_{m}^{-2/m})\right],
=2โˆ’Nโ€‹(Nโˆ’1)/2โ€‹amฮฒโˆ’1/mโ€‹[โˆ‚๐’ซฮ›[m]โ€‹(z1,z2)โˆ‚z2โ€‹(y^โˆ’2โ€‹iโ€‹t+k)+๐’ชโ€‹(amโˆ’1/m)].absentsuperscript2๐‘๐‘12superscriptsubscript๐‘Ž๐‘š๐›ฝ1๐‘šdelimited-[]subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง2subscript๐‘ง2^๐‘ฆ2i๐‘ก๐‘˜๐’ชsuperscriptsubscript๐‘Ž๐‘š1๐‘š\displaystyle=2^{-N(N-1)/2}\hskip 1.42271pta_{m}^{\beta-1/m}\left[\frac{\partial\mathcal{P}^{[m]}_{\Lambda}\left(z_{1},z_{2}\right)}{\partial z_{2}}\left(\hat{y}-2\textrm{i}t+k\right)+\mathcal{O}(a_{m}^{-1/m})\right].

Similarly, we get

det1โ‰คi,jโ‰คN(12ฮฝjโ€‹Sniโˆ’ฮฝjโ€‹(xโˆ’โ€‹(k)+ฮฝjโ€‹s))|ฮฝj=jโˆ’1=2โˆ’Nโ€‹(Nโˆ’1)/2โ€‹amฮฒโˆ’1/mโ€‹[โˆ‚๐’ซฮ›[m]โ€‹(z1,z2)โˆ‚z2โ€‹(y^+2โ€‹iโ€‹tโˆ’k)+๐’ชโ€‹(amโˆ’1/m)].evaluated-atsubscriptformulae-sequence1๐‘–๐‘—๐‘1superscript2subscript๐œˆ๐‘—subscript๐‘†subscript๐‘›๐‘–subscript๐œˆ๐‘—superscriptx๐‘˜subscript๐œˆ๐‘—ssubscript๐œˆ๐‘—๐‘—1superscript2๐‘๐‘12superscriptsubscript๐‘Ž๐‘š๐›ฝ1๐‘šdelimited-[]subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง2subscript๐‘ง2^๐‘ฆ2i๐‘ก๐‘˜๐’ชsuperscriptsubscript๐‘Ž๐‘š1๐‘š\displaystyle\left.\det_{1\leq i,j\leq N}\left(\frac{1}{2^{\nu_{j}}}S_{n_{i}-\nu_{j}}({\textbf{\emph{x}}}^{-}(k)+\nu_{j}\textbf{\emph{s}})\right)\right|_{\nu_{j}=j-1}=2^{-N(N-1)/2}\hskip 1.42271pta_{m}^{\beta-1/m}\left[\frac{\partial\mathcal{P}^{[m]}_{\Lambda}\left(z_{1},z_{2}\right)}{\partial z_{2}}\left(\hat{y}+2\textrm{i}t-k\right)+\mathcal{O}(a_{m}^{-1/m})\right].

Therefore, the contribution to the Laplace expansion (48) from the ฮฝj=jโˆ’1subscript๐œˆ๐‘—๐‘—1\nu_{j}=j-1 indices is

ฯ„k|ฮฝj=jโˆ’1=2โˆ’Nโ€‹(Nโˆ’1)โ€‹am2โ€‹ฮฒโˆ’2/mโ€‹(โˆ‚๐’ซฮ›[m]โˆ‚z2)2โ€‹(y^โˆ’2โ€‹iโ€‹t+k)โ€‹(y^+2โ€‹iโ€‹tโˆ’k)โ€‹[1+๐’ชโ€‹(amโˆ’1/m)].evaluated-atsubscript๐œ๐‘˜subscript๐œˆ๐‘—๐‘—1superscript2๐‘๐‘1superscriptsubscript๐‘Ž๐‘š2๐›ฝ2๐‘šsuperscriptsubscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง22^๐‘ฆ2i๐‘ก๐‘˜^๐‘ฆ2i๐‘ก๐‘˜delimited-[]1๐’ชsuperscriptsubscript๐‘Ž๐‘š1๐‘š\tau_{k}|_{\nu_{j}=j-1}=2^{-N(N-1)}\hskip 1.42271pta_{m}^{2\beta-2/m}\left(\frac{\partial\mathcal{P}^{[m]}_{\Lambda}}{\partial z_{2}}\right)^{2}\left(\hat{y}-2\textrm{i}t+k\right)\left(\hat{y}+2\textrm{i}t-k\right)\left[1+\mathcal{O}(a_{m}^{-1/m})\right].(53)

For the other index choice of (ฮฝ1,โ€ฆ,ฮฝN)=(0,1,โ€ฆ,Nโˆ’2,N)subscript๐œˆ1โ€ฆsubscript๐œˆ๐‘01โ€ฆ๐‘2๐‘(\nu_{1},\dots,\nu_{N})=(0,1,\dots,N-2,N), using similar techniques and the relation (21), we get

ฯ„k|ฮฝ=(0,1,โ€ฆ,Nโˆ’2,N)=2โˆ’Nโ€‹(Nโˆ’1)โˆ’2โ€‹am2โ€‹ฮฒโˆ’2/mโ€‹(โˆ‚๐’ซฮ›[m]โˆ‚z2)2โ€‹[1+๐’ชโ€‹(amโˆ’1/m)].evaluated-atsubscript๐œ๐‘˜๐œˆ01โ€ฆ๐‘2๐‘superscript2๐‘๐‘12superscriptsubscript๐‘Ž๐‘š2๐›ฝ2๐‘šsuperscriptsubscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง22delimited-[]1๐’ชsuperscriptsubscript๐‘Ž๐‘š1๐‘š\tau_{k}|_{\nu=(0,1,\dots,N-2,N)}=2^{-N(N-1)-2}\hskip 1.42271pta_{m}^{2\beta-2/m}\left(\frac{\partial\mathcal{P}^{[m]}_{\Lambda}}{\partial z_{2}}\right)^{2}\left[1+\mathcal{O}(a_{m}^{-1/m})\right].(54)

Combining these two dominant contributions, we get

ฯ„k=2โˆ’Nโ€‹(Nโˆ’1)โ€‹am2โ€‹ฮฒโˆ’2/mโ€‹(โˆ‚๐’ซฮ›[m]โˆ‚z2)2โ€‹[(y^โˆ’2โ€‹iโ€‹t+k)โ€‹(y^+2โ€‹iโ€‹tโˆ’k)+14]โ€‹[1+๐’ชโ€‹(amโˆ’1/m)].subscript๐œ๐‘˜superscript2๐‘๐‘1superscriptsubscript๐‘Ž๐‘š2๐›ฝ2๐‘šsuperscriptsubscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง22delimited-[]^๐‘ฆ2i๐‘ก๐‘˜^๐‘ฆ2i๐‘ก๐‘˜14delimited-[]1๐’ชsuperscriptsubscript๐‘Ž๐‘š1๐‘š\tau_{k}=2^{-N(N-1)}\hskip 1.42271pta_{m}^{2\beta-2/m}\left(\frac{\partial\mathcal{P}^{[m]}_{\Lambda}}{\partial z_{2}}\right)^{2}\left[\left(\hat{y}-2\textrm{i}t+k\right)\left(\hat{y}+2\textrm{i}t-k\right)+\frac{1}{4}\right]\left[1+\mathcal{O}(a_{m}^{-1/m})\right].(55)

Inserting this asymptotics of ฯ„ksubscript๐œ๐‘˜\tau_{k} into Eq.(3) and recalling y^=yโˆ’ycโ€‹(x)^๐‘ฆ๐‘ฆsubscript๐‘ฆ๐‘๐‘ฅ\hat{y}=y-y_{c}(x), we then get

Aโ€‹(x,y,t)=2โ€‹[1+4โ€‹iโ€‹tโˆ’1[yโˆ’ycโ€‹(x)]2+4โ€‹t2+14]โ€‹[1+๐’ชโ€‹(amโˆ’1/m)].๐ด๐‘ฅ๐‘ฆ๐‘ก2delimited-[]14i๐‘ก1superscriptdelimited-[]๐‘ฆsubscript๐‘ฆ๐‘๐‘ฅ24superscript๐‘ก214delimited-[]1๐’ชsuperscriptsubscript๐‘Ž๐‘š1๐‘š\displaystyle A(x,y,t)=\sqrt{2}\left[1+\frac{4{\rm{i}}t-1}{\left[y-y_{c}(x)\right]^{2}+4t^{2}+\frac{1}{4}}\right]\left[1+\mathcal{O}(a_{m}^{-1/m})\right].(56)

This is our asymptotic prediction of the Aโ€‹(x,y,t)๐ด๐‘ฅ๐‘ฆ๐‘กA(x,y,t) solution near the critical curve y=ycโ€‹(x)๐‘ฆsubscript๐‘ฆ๐‘๐‘ฅy=y_{c}(x) as given in Theorem 1.

It is important to notice that the above predictions would be invalid near exceptional points of the critical curve, where โˆ‚๐’ซฮ›[m]/โˆ‚z2=0subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง20\partial\mathcal{P}^{[m]}_{\Lambda}/\partial z_{2}=0. Near such points, the dominant contribution (55) to ฯ„ksubscript๐œ๐‘˜\tau_{k} either vanishes or is of lower order in amsubscript๐‘Ž๐‘ša_{m}, and a more advanced calculation would be needed to calculate ฯ„ksubscript๐œ๐‘˜\tau_{k}โ€™s dominant contribution there.

This completes the proof of Theorem 1.

VII Asymptotic predictions for pโ‰ 1๐‘1p\neq 1

In Theorem 1, we set p=1๐‘1p=1. In this section, we discuss rogue curves when pโ‰ 1๐‘1p\neq 1. Our assumptions on parameters a are the same as before, i.e., for a certain mโ‰ฅ3๐‘š3m\geq 3, amsubscript๐‘Ž๐‘ša_{m} is real, amโ‰ซ1much-greater-thansubscript๐‘Ž๐‘š1a_{m}\gg 1 when m๐‘šm is even and |am|โ‰ซ1much-greater-thansubscript๐‘Ž๐‘š1|a_{m}|\gg 1 when m๐‘šm is odd, and the other ajsubscript๐‘Ž๐‘—a_{j} values in a are Oโ€‹(1)๐‘‚1O(1) and complex.

In this more general case,

x1+โ€‹(k)=c11โ€‹x+c12โ€‹yโˆ’c13โ€‹iโ€‹t+k,x2+=c21โ€‹x+c22โ€‹yโˆ’c23โ€‹iโ€‹t+a2,formulae-sequencesuperscriptsubscript๐‘ฅ1๐‘˜subscript๐‘11๐‘ฅsubscript๐‘12๐‘ฆsubscript๐‘13i๐‘ก๐‘˜superscriptsubscript๐‘ฅ2subscript๐‘21๐‘ฅsubscript๐‘22๐‘ฆsubscript๐‘23i๐‘กsubscript๐‘Ž2x_{1}^{+}(k)=c_{11}x+c_{12}y-c_{13}\textrm{i}t+k,\quad x_{2}^{+}=c_{21}x+c_{22}y-c_{23}\textrm{i}t+a_{2},(57)

and so on, where

c11=pโˆ’pโˆ’12,c12=p+pโˆ’12,c13=p2+pโˆ’2,formulae-sequencesubscript๐‘11๐‘superscript๐‘12formulae-sequencesubscript๐‘12๐‘superscript๐‘12subscript๐‘13superscript๐‘2superscript๐‘2c_{11}=\frac{p-p^{-1}}{2},\quad c_{12}=\frac{p+p^{-1}}{2},\quad c_{13}=p^{2}+p^{-2},(58)
c21=p+pโˆ’14,c22=pโˆ’pโˆ’14,c23=p2โˆ’pโˆ’2.formulae-sequencesubscript๐‘21๐‘superscript๐‘14formulae-sequencesubscript๐‘22๐‘superscript๐‘14subscript๐‘23superscript๐‘2superscript๐‘2c_{21}=\frac{p+p^{-1}}{4},\quad c_{22}=\frac{p-p^{-1}}{4},\quad c_{23}=p^{2}-p^{-2}.(59)

Then, for |am|โ‰ซ1much-greater-thansubscript๐‘Ž๐‘š1|a_{m}|\gg 1, |x|โ‰ซ1much-greater-than๐‘ฅ1|x|\gg 1, |y|โ‰ซ1much-greater-than๐‘ฆ1|y|\gg 1 and t=Oโ€‹(1)๐‘ก๐‘‚1t=O(1), we have

Snโ€‹[x+โ€‹(k)+ฮฝโ€‹s]โˆผSnโ€‹(c11โ€‹x+c12โ€‹y,c21โ€‹x+c22โ€‹y,0,โ‹ฏ,0,am,0,โ‹ฏ).similar-tosubscript๐‘†๐‘›delimited-[]superscriptx๐‘˜๐œˆssubscript๐‘†๐‘›subscript๐‘11๐‘ฅsubscript๐‘12๐‘ฆsubscript๐‘21๐‘ฅsubscript๐‘22๐‘ฆ0โ‹ฏ0subscript๐‘Ž๐‘š0โ‹ฏ\displaystyle S_{n}\left[\textbf{\emph{x}}^{+}(k)+\nu\textbf{\emph{s}}\right]\sim S_{n}(c_{11}x+c_{12}y,c_{21}x+c_{22}y,0,\cdots,0,a_{m},0,\cdots).

Setting

c11โ€‹x+c12โ€‹y=z2โ€‹am1/m,c21โ€‹x+c22โ€‹y=z1โ€‹am2/m,formulae-sequencesubscript๐‘11๐‘ฅsubscript๐‘12๐‘ฆsubscript๐‘ง2superscriptsubscript๐‘Ž๐‘š1๐‘šsubscript๐‘21๐‘ฅsubscript๐‘22๐‘ฆsubscript๐‘ง1superscriptsubscript๐‘Ž๐‘š2๐‘šc_{11}x+c_{12}y=z_{2}a_{m}^{1/m},\quad c_{21}x+c_{22}y=z_{1}a_{m}^{2/m},(60)

we get

Snโ€‹[x+โ€‹(k)+ฮฝโ€‹s]โˆผSnโ€‹(z2โ€‹am1/m,z1โ€‹am2/m,0,โ‹ฏ,0,am,0,โ‹ฏ)=amn/mโ€‹Snโ€‹(z2,z1,0,โ‹ฏ,0,1,0,โ‹ฏ)=amn/mโ€‹๐’ฎn[m]โ€‹(z1,z2).similar-tosubscript๐‘†๐‘›delimited-[]superscriptx๐‘˜๐œˆssubscript๐‘†๐‘›subscript๐‘ง2superscriptsubscript๐‘Ž๐‘š1๐‘šsubscript๐‘ง1superscriptsubscript๐‘Ž๐‘š2๐‘š0โ‹ฏ0subscript๐‘Ž๐‘š0โ‹ฏsuperscriptsubscript๐‘Ž๐‘š๐‘›๐‘šsubscript๐‘†๐‘›subscript๐‘ง2subscript๐‘ง10โ‹ฏ010โ‹ฏsuperscriptsubscript๐‘Ž๐‘š๐‘›๐‘šsubscriptsuperscript๐’ฎdelimited-[]๐‘š๐‘›subscript๐‘ง1subscript๐‘ง2S_{n}\left[\textbf{\emph{x}}^{+}(k)+\nu\textbf{\emph{s}}\right]\sim S_{n}(z_{2}a_{m}^{1/m},z_{1}a_{m}^{2/m},0,\cdots,0,a_{m},0,\cdots)=a_{m}^{n/m}S_{n}\left(z_{2},z_{1},0,\cdots,0,1,0,\cdots\right)=a_{m}^{n/m}\mathcal{S}^{[m]}_{n}(z_{1},z_{2}).(61)

Similarly,

Snโ€‹[xโˆ’โ€‹(k)+ฮฝโ€‹s]โˆผamn/mโ€‹๐’ฎn[m]โ€‹(z1,z2).similar-tosubscript๐‘†๐‘›delimited-[]superscriptx๐‘˜๐œˆssuperscriptsubscript๐‘Ž๐‘š๐‘›๐‘šsubscriptsuperscript๐’ฎdelimited-[]๐‘š๐‘›subscript๐‘ง1subscript๐‘ง2S_{n}\left[\textbf{\emph{x}}^{-}(k)+\nu\textbf{\emph{s}}\right]\sim a_{m}^{n/m}\mathcal{S}^{[m]}_{n}(z_{1},z_{2}).(62)

Thus, using the Laplace expansion (48), we get

ฯ„kโˆผ2โˆ’Nโ€‹(Nโˆ’1)โ€‹am2โ€‹ฮฒโ€‹[๐’ซฮ›[m]โ€‹(z1,z2)]2,|am|โ‰ซ1,formulae-sequencesimilar-tosubscript๐œ๐‘˜superscript2๐‘๐‘1superscriptsubscript๐‘Ž๐‘š2๐›ฝsuperscriptdelimited-[]subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง22much-greater-thansubscript๐‘Ž๐‘š1\tau_{k}\sim 2^{-N(N-1)}\hskip 1.42271pta_{m}^{2\beta}\left[\mathcal{P}^{[m]}_{\Lambda}(z_{1},z_{2})\right]^{2},\quad\quad|a_{m}|\gg 1,(63)

where ฮฒ๐›ฝ\beta has been defined below Eq.(49). Inserting this leading-order term of ฯ„ksubscript๐œ๐‘˜\tau_{k} into Eq.(3), we see that the solution Aฮ›โ€‹(x,y,t)subscript๐ดฮ›๐‘ฅ๐‘ฆ๐‘กA_{\Lambda}(x,y,t) approaches 22\sqrt{2} when |am|โ†’โˆžโ†’subscript๐‘Ž๐‘š|a_{m}|\to\infty, except at or near (x,y)๐‘ฅ๐‘ฆ(x,y) locations where ๐’ซฮ›[m]โ€‹(z1,z2)=0subscriptsuperscript๐’ซdelimited-[]๐‘šฮ›subscript๐‘ง1subscript๐‘ง20\mathcal{P}^{[m]}_{\Lambda}(z_{1},z_{2})=0, or equivalently,

๐’ซฮ›[m]โ€‹(c21โ€‹x+c22โ€‹yam2/m,c11โ€‹x+c12โ€‹yam1/m)=0.superscriptsubscript๐’ซฮ›delimited-[]๐‘šsubscript๐‘21๐‘ฅsubscript๐‘22๐‘ฆsuperscriptsubscript๐‘Ž๐‘š2๐‘šsubscript๐‘11๐‘ฅsubscript๐‘12๐‘ฆsuperscriptsubscript๐‘Ž๐‘š1๐‘š0\mathcal{P}_{\Lambda}^{[m]}\left(\frac{c_{21}x+c_{22}y}{a_{m}^{2/m}},\frac{c_{11}x+c_{12}y}{a_{m}^{1/m}}\right)=0.(64)

This equation defines a critical curve where the rogue curve lies for pโ‰ 1๐‘1p\neq 1. Using the notation of Eq.(27), this critical curve can be written as

c11โ€‹x+c12โ€‹y=y^cโ€‹(c21โ€‹x+c22โ€‹y),subscript๐‘11๐‘ฅsubscript๐‘12๐‘ฆsubscript^๐‘ฆ๐‘subscript๐‘21๐‘ฅsubscript๐‘22๐‘ฆc_{11}x+c_{12}y=\hat{y}_{c}(c_{21}x+c_{22}y),(65)

where

y^cโ€‹(x)โ‰กam1/mโ€‹โ„›ฮ›,mโ€‹(xam2/m).subscript^๐‘ฆ๐‘๐‘ฅsuperscriptsubscript๐‘Ž๐‘š1๐‘šsubscriptโ„›ฮ›๐‘š๐‘ฅsuperscriptsubscript๐‘Ž๐‘š2๐‘š\hat{y}_{c}(x)\equiv a_{m}^{1/m}\mathcal{R}_{\Lambda,m}\left(\frac{x}{a_{m}^{2/m}}\right).(66)

This critical curve is the counterpart of Eq.(32) for the p=1๐‘1p=1 case. In the (x,y)๐‘ฅ๐‘ฆ(x,y) plane, the shape of this critical curve is related to that of the previous one for p=1๐‘1p=1 through a linear transformation

(xy)|pโ‰ 1=(2โ€‹c212โ€‹c22c11c12)โˆ’1โ€‹(xy)|p=1.evaluated-at๐‘ฅ๐‘ฆ๐‘1evaluated-atsuperscript2subscript๐‘212subscript๐‘22subscript๐‘11subscript๐‘121๐‘ฅ๐‘ฆ๐‘1\left.\left(\begin{array}[]{c}x\\y\end{array}\right)\right|_{p\neq 1}=\left(\begin{array}[]{cc}2c_{21}&2c_{22}\\c_{11}&c_{12}\end{array}\right)^{-1}\left.\left(\begin{array}[]{c}x\\y\end{array}\right)\right|_{p=1}.(67)

When (x,y)๐‘ฅ๐‘ฆ(x,y) is in the Oโ€‹(1)๐‘‚1O(1) neighborhood of this critical curve, we can further determine the asymptotic prediction for the solution, similar to what we have done for the p=1๐‘1p=1 case earlier. This predicted solution is found to be

ARโ€‹(x,y,t)=2โ€‹[1+2โ€‹c13โ€‹iโ€‹tโˆ’1[c11โ€‹x+c12โ€‹yโˆ’y^cโ€‹(c21โ€‹x+c22โ€‹y)]2+c132โ€‹t2+14]+Oโ€‹(|am|โˆ’1/m).subscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘ก2delimited-[]12subscript๐‘13i๐‘ก1superscriptdelimited-[]subscript๐‘11๐‘ฅsubscript๐‘12๐‘ฆsubscript^๐‘ฆ๐‘subscript๐‘21๐‘ฅsubscript๐‘22๐‘ฆ2superscriptsubscript๐‘132superscript๐‘ก214๐‘‚superscriptsubscript๐‘Ž๐‘š1๐‘š\displaystyle A_{R}(x,y,t)=\sqrt{2}\left[1+\frac{2c_{13}{\rm{i}}t-1}{\left[c_{11}x+c_{12}y-\hat{y}_{c}(c_{21}x+c_{22}y)\right]^{2}+c_{13}^{2}t^{2}+\frac{1}{4}}\right]+O(|a_{m}|^{-1/m}).(68)

When we compare the leading-order term of this prediction with the previous prediction (35) for p=1๐‘1p=1 (at the same ฮ›ฮ›\Lambda and a values), we see that the current prediction (for pโ‰ 1๐‘1p\neq 1) spatially is the previous prediction of p=1๐‘1p=1 under a linear (x,y)๐‘ฅ๐‘ฆ(x,y) transformation (67), plus a temporal rescaling. Thus, the current prediction can be viewed as a skewed Peregrine rogue wave (along the c11โ€‹x+c12โ€‹ysubscript๐‘11๐‘ฅsubscript๐‘12๐‘ฆc_{11}x+c_{12}y direction).

Similar to the p=1๐‘1p=1 case, our predictions would be invalid in the Oโ€‹(1)๐‘‚1O(1) neighborhood of exceptional points of the critical curve. These exceptional points are on the critical curve with the additional condition that

โˆ‚โˆ‚z2โ€‹๐’ซฮ›[m]โ€‹(c21โ€‹x+c22โ€‹yam2/m,c11โ€‹x+c12โ€‹yam1/m)=0.subscript๐‘ง2superscriptsubscript๐’ซฮ›delimited-[]๐‘šsubscript๐‘21๐‘ฅsubscript๐‘22๐‘ฆsuperscriptsubscript๐‘Ž๐‘š2๐‘šsubscript๐‘11๐‘ฅsubscript๐‘12๐‘ฆsuperscriptsubscript๐‘Ž๐‘š1๐‘š0\frac{\partial}{\partial z_{2}}\mathcal{P}_{\Lambda}^{[m]}\left(\frac{c_{21}x+c_{22}y}{a_{m}^{2/m}},\frac{c_{11}x+c_{12}y}{a_{m}^{1/m}}\right)=0.(69)

It is easy to see that these exceptional points (x(e),yc(e))superscript๐‘ฅ๐‘’superscriptsubscript๐‘ฆ๐‘๐‘’(x^{(e)},y_{c}^{(e)}) of the critical curve are related to exceptional points (z1(e),z2(e))superscriptsubscript๐‘ง1๐‘’superscriptsubscript๐‘ง2๐‘’(z_{1}^{(e)},z_{2}^{(e)}) of the root curve as

c21โ€‹x(e)+c22โ€‹y(e)=am2/mโ€‹z1(e),c11โ€‹x(e)+c12โ€‹y(e)=am1/mโ€‹z2(e).formulae-sequencesubscript๐‘21superscript๐‘ฅ๐‘’subscript๐‘22superscript๐‘ฆ๐‘’superscriptsubscript๐‘Ž๐‘š2๐‘šsuperscriptsubscript๐‘ง1๐‘’subscript๐‘11superscript๐‘ฅ๐‘’subscript๐‘12superscript๐‘ฆ๐‘’superscriptsubscript๐‘Ž๐‘š1๐‘šsuperscriptsubscript๐‘ง2๐‘’c_{21}x^{(e)}+c_{22}y^{(e)}=a_{m}^{2/m}z_{1}^{(e)},\quad c_{11}x^{(e)}+c_{12}y^{(e)}=a_{m}^{1/m}z_{2}^{(e)}.(70)

It is important to note that in the present pโ‰ 1๐‘1p\neq 1 case, an exceptional point of the critical curve may not be a bifurcation point of the critical curve when this critical curve is viewed as a bifurcation diagram in the (x,y)๐‘ฅ๐‘ฆ(x,y) plane, because the dynamical system point of view similar to Eq.(29) does not apply here. For example, a saddle-node bifurcation point (often an edge point) of the critical curve, in the (x,y)๐‘ฅ๐‘ฆ(x,y) plane, is generally not an exceptional point of the critical curve when pโ‰ 1๐‘1p\neq 1.

Now, we compare the above predictions with true solutions. For this purpose, we choose parameters in the DSI solution of Lemma1 as

p=6/5,ฮ›=(2,3),a=(0,0,2000).formulae-sequence๐‘65formulae-sequenceฮ›23a002000p=6/5,\quad\Lambda=(2,3),\quad\textbf{\emph{a}}=(0,0,2000).(71)

The corresponding true solution |A|๐ด|A| at four time values of t=โˆ’3,โˆ’1,0๐‘ก310t=-3,-1,0 and 3 is plotted in the upper row of Fig.9. It is seen that a rogue curve in the shape of an elongated ring arises from a uniform background with two lumps on it. This rogue ring reaches peak amplitude at t=0๐‘ก0t=0 and then fades away to that same background afterwards.

Our predicted solution of Aโ€‹(x,y,t)๐ด๐‘ฅ๐‘ฆ๐‘กA(x,y,t), from Eq.(68) near the critical curve (65) and 22\sqrt{2} away from this curve, is plotted in the lower row of Fig.9 at the same time values of the true solution in its upper row. Comparing the predicted solution to the true solution, we see that the predicted rogue ring closely matches the true one in its shape and location. The main differences between the predicted and true solutions are at the two lumps, which are located at the exceptional points of the critical curve where our prediction does not hold.

Rogue curves in the Davey-Stewartson I equation (9)

VIII Extension to large negative amsubscript๐‘Ž๐‘ša_{m} when m๐‘šm is even

In Theorem1, we assumed that when m๐‘šm is even, amsubscript๐‘Ž๐‘ša_{m} would be large positive. It turns out that rogue curves can also arise in the case of large negative amsubscript๐‘Ž๐‘ša_{m} when m๐‘šm is even. We will generalize our earlier results to this case in this section.

To study rogue curves for large negative amsubscript๐‘Ž๐‘ša_{m} with m๐‘šm even, we will need to slightly modify the definition of double-real-variable polynomials ๐’ซฮ›[m]โ€‹(z1,z2)superscriptsubscript๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2\mathcal{P}_{\Lambda}^{[m]}(z_{1},z_{2}). In this case, we define

๐’ซ^ฮ›[m]โ€‹(z1,z2)=|๐’ฎ^n1[m]โ€‹(z1,z2)๐’ฎ^n1โˆ’1[m]โ€‹(z1,z2)โ‹ฏ๐’ฎ^n1โˆ’N+1[m]โ€‹(z1,z2)๐’ฎ^n2[m]โ€‹(z1,z2)๐’ฎ^n2โˆ’1[m]โ€‹(z1,z2)โ‹ฏ๐’ฎ^n2โˆ’N+1[m]โ€‹(z1,z2)โ‹ฎโ‹ฎโ‹ฎโ‹ฎ๐’ฎ^nN[m]โ€‹(z1,z2)๐’ฎ^nNโˆ’1[m]โ€‹(z1,z2)โ‹ฏ๐’ฎ^nNโˆ’N+1[m]โ€‹(z1,z2)|,superscriptsubscript^๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2subscriptsuperscript^๐’ฎdelimited-[]๐‘šsubscript๐‘›1subscript๐‘ง1subscript๐‘ง2subscriptsuperscript^๐’ฎdelimited-[]๐‘šsubscript๐‘›11subscript๐‘ง1subscript๐‘ง2โ‹ฏsubscriptsuperscript^๐’ฎdelimited-[]๐‘šsubscript๐‘›1๐‘1subscript๐‘ง1subscript๐‘ง2subscriptsuperscript^๐’ฎdelimited-[]๐‘šsubscript๐‘›2subscript๐‘ง1subscript๐‘ง2subscriptsuperscript^๐’ฎdelimited-[]๐‘šsubscript๐‘›21subscript๐‘ง1subscript๐‘ง2โ‹ฏsubscriptsuperscript^๐’ฎdelimited-[]๐‘šsubscript๐‘›2๐‘1subscript๐‘ง1subscript๐‘ง2โ‹ฎโ‹ฎโ‹ฎโ‹ฎsubscriptsuperscript^๐’ฎdelimited-[]๐‘šsubscript๐‘›๐‘subscript๐‘ง1subscript๐‘ง2subscriptsuperscript^๐’ฎdelimited-[]๐‘šsubscript๐‘›๐‘1subscript๐‘ง1subscript๐‘ง2โ‹ฏsubscriptsuperscript^๐’ฎdelimited-[]๐‘šsubscript๐‘›๐‘๐‘1subscript๐‘ง1subscript๐‘ง2\displaystyle\hat{\mathcal{P}}_{\Lambda}^{[m]}(z_{1},z_{2})=\left|\begin{array}[]{cccc}\hat{\mathcal{S}}^{[m]}_{n_{1}}(z_{1},z_{2})&\hat{\mathcal{S}}^{[m]}_{n_{1}-1}(z_{1},z_{2})&\cdots&\hat{\mathcal{S}}^{[m]}_{n_{1}-N+1}(z_{1},z_{2})\\\hat{\mathcal{S}}^{[m]}_{n_{2}}(z_{1},z_{2})&\hat{\mathcal{S}}^{[m]}_{n_{2}-1}(z_{1},z_{2})&\cdots&\hat{\mathcal{S}}^{[m]}_{n_{2}-N+1}(z_{1},z_{2})\\\vdots&\vdots&\vdots&\vdots\\\hat{\mathcal{S}}^{[m]}_{n_{N}}(z_{1},z_{2})&\hat{\mathcal{S}}^{[m]}_{n_{N}-1}(z_{1},z_{2})&\cdots&\hat{\mathcal{S}}^{[m]}_{n_{N}-N+1}(z_{1},z_{2})\end{array}\right|,(76)

where Schur polynomials ๐’ฎ^k[m]โ€‹(z1,z2)subscriptsuperscript^๐’ฎdelimited-[]๐‘š๐‘˜subscript๐‘ง1subscript๐‘ง2\hat{\mathcal{S}}^{[m]}_{k}(z_{1},z_{2}) are defined slightly differently from (20) as

โˆ‘k=0โˆž๐’ฎ^k[m]โ€‹(z1,z2)โ€‹ฯตk=expโก(z2โ€‹ฯต+z1โ€‹ฯต2โˆ’ฯตm),mโ‰ฅ3.formulae-sequencesuperscriptsubscript๐‘˜0subscriptsuperscript^๐’ฎdelimited-[]๐‘š๐‘˜subscript๐‘ง1subscript๐‘ง2superscriptitalic-ฯต๐‘˜subscript๐‘ง2italic-ฯตsubscript๐‘ง1superscriptitalic-ฯต2superscriptitalic-ฯต๐‘š๐‘š3\sum_{k=0}^{\infty}\hat{\mathcal{S}}^{[m]}_{k}(z_{1},z_{2})\epsilon^{k}=\exp\left(z_{2}\epsilon+z_{1}\epsilon^{2}-\epsilon^{m}\right),\ \ \ m\geq 3.(77)

For p=1๐‘1p=1, we define the critical curve y=ycโ€‹(x)๐‘ฆsubscript๐‘ฆ๐‘๐‘ฅy=y_{c}(x) as

๐’ซ^ฮ›[m]โ€‹(x2โ€‹|am|2/m,ycโ€‹(x)|am|1/m)=0.superscriptsubscript^๐’ซฮ›delimited-[]๐‘š๐‘ฅ2superscriptsubscript๐‘Ž๐‘š2๐‘šsubscript๐‘ฆ๐‘๐‘ฅsuperscriptsubscript๐‘Ž๐‘š1๐‘š0\hat{\mathcal{P}}_{\Lambda}^{[m]}\left(\frac{x}{2|a_{m}|^{2/m}},\frac{y_{c}(x)}{|a_{m}|^{1/m}}\right)=0.(78)

Then, the results of Theorem1 (for p=1๐‘1p=1) would remain valid, i.e., a rogue curve would appear near this critical curve with its expression given by Eq.(35). For pโ‰ 1๐‘1p\neq 1, the location and expression of the rogue curve could be similarly obtained from Sec.VII by changing ๐’ซฮ›[m]superscriptsubscript๐’ซฮ›delimited-[]๐‘š\mathcal{P}_{\Lambda}^{[m]} to ๐’ซ^ฮ›[m]superscriptsubscript^๐’ซฮ›delimited-[]๐‘š\hat{\mathcal{P}}_{\Lambda}^{[m]} and amsubscript๐‘Ž๐‘ša_{m} to |am|subscript๐‘Ž๐‘š|a_{m}| in Eq.(64).

IX Connections between rogue curves for different order-index vectors ฮ›ฮ›\Lambda

In this section, we show that rogue curves for certain different order-index vectors ฮ›=(n1,n2,โ€ฆ,nN)ฮ›subscript๐‘›1subscript๐‘›2โ€ฆsubscript๐‘›๐‘\Lambda=(n_{1},n_{2},\dots,n_{N}) are related to each other, using the theory of symmetric functions Murnaghan1937 ; Chakravarty2022KPI ; Chakravarty2023KPI .

For this purpose, it would be convenient to introduce the Young diagram Y=(i1,i2,โ€ฆ,iN)๐‘Œsubscript๐‘–1subscript๐‘–2โ€ฆsubscript๐‘–๐‘Y=(i_{1},i_{2},\dots,i_{N}), or a partition, of length N๐‘N, which is a decomposition of a non-negative integer M๐‘€M given by a sequence of descending non-zero numbers such that i1โ‰ฅi2โ‰ฅโ‹ฏโ‰ฅiN>0subscript๐‘–1subscript๐‘–2โ‹ฏsubscript๐‘–๐‘0i_{1}\geq i_{2}\geq\dots\geq i_{N}>0 and |Y|:=i1+โ‹ฏ+iN=Massign๐‘Œsubscript๐‘–1โ‹ฏsubscript๐‘–๐‘๐‘€|Y|:=i_{1}+\cdots+i_{N}=M. The Schur function WYโ€‹(x)subscript๐‘Š๐‘ŒxW_{Y}(\emph{{x}}), for vector x=(x1,x2,โ€ฆ)xsubscript๐‘ฅ1subscript๐‘ฅ2โ€ฆ\emph{{x}}=(x_{1},x_{2},\dots) and Young diagram Y=(i1,i2,โ€ฆ,iN)๐‘Œsubscript๐‘–1subscript๐‘–2โ€ฆsubscript๐‘–๐‘Y=(i_{1},i_{2},\dots,i_{N}), is defined by

WYโ€‹(x)=det1โ‰คj,kโ‰คN[Sijโˆ’j+kโ€‹(x)],subscript๐‘Š๐‘Œxsubscriptformulae-sequence1๐‘—๐‘˜๐‘delimited-[]subscript๐‘†subscript๐‘–๐‘—๐‘—๐‘˜xW_{Y}(\emph{{x}})=\det_{1\leq j,k\leq N}[S_{i_{j}-j+k}(\emph{{x}})],(79)

where elementary Schur polynomials Sjโ€‹(x)subscript๐‘†๐‘—xS_{j}(\emph{{x}}) are as defined in Eq.(2).

The Young diagram Y=(i1,i2,โ€ฆ,iN)๐‘Œsubscript๐‘–1subscript๐‘–2โ€ฆsubscript๐‘–๐‘Y=(i_{1},i_{2},\dots,i_{N}) is often displayed as a rectangular array of left-justified boxes such that the k๐‘˜k-th row from the top contains iksubscript๐‘–๐‘˜i_{k} boxes, k=1,โ€ฆ,N๐‘˜1โ€ฆ๐‘k=1,...,N. Thus the Young diagram consists of N๐‘N rows and a total number of M๐‘€M boxes. The conjugate Yโ€ฒsuperscript๐‘Œโ€ฒY^{\prime} of a partition Y๐‘ŒY is a partition whose Young diagram is the transpose of the original one obtained by interchanging its rows and columns. Obviously, |Y|=|Yโ€ฒ|=M,(Yโ€ฒ)โ€ฒ=Yformulae-sequence๐‘Œsuperscript๐‘Œโ€ฒ๐‘€superscriptsuperscript๐‘Œโ€ฒโ€ฒ๐‘Œ|Y|=|Y^{\prime}|=M,\ (Y^{\prime})^{\prime}=Y. A partition Y๐‘ŒY is called self-conjugate if Y=Yโ€ฒ๐‘Œsuperscript๐‘Œโ€ฒY=Y^{\prime}.

A well known result from the theory of symmetric functions Murnaghan1937 ; Chakravarty2022KPI ; Chakravarty2023KPI is the following involution symmetry among Schur functions of a given partition Y๐‘ŒY and its conjugate Yโ€ฒsuperscript๐‘Œโ€ฒY^{\prime}:

WYโ€ฒโ€‹(x)=WYโ€‹(ฯ‰โ€‹(x)),ฯ‰โ€‹(xj)=(โˆ’1)jโˆ’1โ€‹xj.formulae-sequencesubscript๐‘Šsuperscript๐‘Œโ€ฒxsubscript๐‘Š๐‘Œ๐œ”x๐œ”subscript๐‘ฅ๐‘—superscript1๐‘—1subscript๐‘ฅ๐‘—W_{Y^{\prime}}(\emph{{x}})=W_{Y}(\omega(\emph{{x}})),\quad\omega(x_{j})=(-1)^{j-1}x_{j}.(80)

For example, when

Y=(3,2)=\ydiagramโ€‹3,2,formulae-sequence๐‘Œ32\ydiagram32Y=(3,2)=\ydiagram{3,2}\ ,

the conjugate partition Yโ€ฒsuperscript๐‘Œโ€ฒY^{\prime} is

Yโ€ฒ=(2,2,1)=\ydiagramโ€‹2,2,1.formulae-sequencesuperscript๐‘Œโ€ฒ221\ydiagram221Y^{\prime}=(2,2,1)=\ydiagram{2,2,1}\ .

The associated Schur functions are

WYโ€‹(x)=x1524+x13โ€‹x26+x1โ€‹x222โˆ’x12โ€‹x32+x2โ€‹x3โˆ’x1โ€‹x4,subscript๐‘Š๐‘Œxsuperscriptsubscript๐‘ฅ1524superscriptsubscript๐‘ฅ13subscript๐‘ฅ26subscript๐‘ฅ1superscriptsubscript๐‘ฅ222superscriptsubscript๐‘ฅ12subscript๐‘ฅ32subscript๐‘ฅ2subscript๐‘ฅ3subscript๐‘ฅ1subscript๐‘ฅ4W_{Y}(\emph{{x}})=\frac{x_{1}^{5}}{24}+\frac{x_{1}^{3}x_{2}}{6}+\frac{x_{1}x_{2}^{2}}{2}-\frac{x_{1}^{2}x_{3}}{2}+x_{2}x_{3}-x_{1}x_{4},(81)

and

WYโ€ฒโ€‹(x)=x1524โˆ’x13โ€‹x26+x1โ€‹x222โˆ’x12โ€‹x32โˆ’x2โ€‹x3+x1โ€‹x4,subscript๐‘Šsuperscript๐‘Œโ€ฒxsuperscriptsubscript๐‘ฅ1524superscriptsubscript๐‘ฅ13subscript๐‘ฅ26subscript๐‘ฅ1superscriptsubscript๐‘ฅ222superscriptsubscript๐‘ฅ12subscript๐‘ฅ32subscript๐‘ฅ2subscript๐‘ฅ3subscript๐‘ฅ1subscript๐‘ฅ4W_{Y^{\prime}}(\emph{{x}})=\frac{x_{1}^{5}}{24}-\frac{x_{1}^{3}x_{2}}{6}+\frac{x_{1}x_{2}^{2}}{2}-\frac{x_{1}^{2}x_{3}}{2}-x_{2}x_{3}+x_{1}x_{4},(82)

which satisfy the involution symmetry (80).

Now, we relate the ๐’ซฮ›[m]โ€‹(z1,z2)superscriptsubscript๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2\mathcal{P}_{\Lambda}^{[m]}(z_{1},z_{2}) and ๐’ซ^ฮ›[m]โ€‹(z1,z2)superscriptsubscript^๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2\hat{\mathcal{P}}_{\Lambda}^{[m]}(z_{1},z_{2}) polynomials introduced earlier in Eqs.(19) and (76) to these Schur functions. It is easy to see that for ฮ›=(n1,n2,โ€ฆ,nN)ฮ›subscript๐‘›1subscript๐‘›2โ€ฆsubscript๐‘›๐‘\Lambda=(n_{1},n_{2},\dots,n_{N}) with n1<n2<โ‹ฏ<nNsubscript๐‘›1subscript๐‘›2โ‹ฏsubscript๐‘›๐‘n_{1}<n_{2}<\cdots<n_{N},

๐’ซฮ›[m]โ€‹(z1,z2)=WYโ€‹(x),superscriptsubscript๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2subscript๐‘Š๐‘Œx\mathcal{P}_{\Lambda}^{[m]}(z_{1},z_{2})=W_{Y}(\emph{{x}}),(83)

where the Young diagram Y=(i1,i2,โ€ฆ,iN)๐‘Œsubscript๐‘–1subscript๐‘–2โ€ฆsubscript๐‘–๐‘Y=(i_{1},i_{2},\dots,i_{N}) is given by

iNโˆ’(jโˆ’1)=njโˆ’(jโˆ’1),j=1,โ€ฆ,N,formulae-sequencesubscript๐‘–๐‘๐‘—1subscript๐‘›๐‘—๐‘—1๐‘—1โ€ฆ๐‘i_{N-(j-1)}=n_{j}-(j-1),\quad j=1,\dots,N,(84)

and x=(z2,z1,0,โ€ฆ,1,0,โ€ฆ)xsubscript๐‘ง2subscript๐‘ง10โ€ฆ10โ€ฆ\emph{{x}}=(z_{2},z_{1},0,\dots,1,0,\dots) with 111 in its m๐‘šm-th element.Similarly, ๐’ซ^ฮ›[m]โ€‹(z1,z2)=WYโ€‹(x^)superscriptsubscript^๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2subscript๐‘Š๐‘Œ^x\hat{\mathcal{P}}_{\Lambda}^{[m]}(z_{1},z_{2})=W_{Y}(\hat{\emph{{x}}}), wherex^=(z2,z1,0,โ€ฆ,โˆ’1,0,โ€ฆ)^xsubscript๐‘ง2subscript๐‘ง10โ€ฆ10โ€ฆ\hat{\emph{{x}}}=(z_{2},z_{1},0,\dots,-1,0,\dots) with โˆ’11-1 in its m๐‘šm-th element. We define the conjugate ฮ›โ€ฒsuperscriptฮ›โ€ฒ\Lambda^{\prime} of the order-index vector ฮ›ฮ›\Lambda as one whose Young diagram is the conjugate of ฮ›ฮ›\Lambdaโ€™s Young diagram. For example, when ฮ›=(4,5)ฮ›45\Lambda=(4,5), Y=(4,4)๐‘Œ44Y=(4,4). Thus, Yโ€ฒ=(2,2,2,2)superscript๐‘Œโ€ฒ2222Y^{\prime}=(2,2,2,2) and ฮ›โ€ฒ=(2,3,4,5)superscriptฮ›โ€ฒ2345\Lambda^{\prime}=(2,3,4,5). ฮ›ฮ›\Lambda is called self-conjugate if ฮ›=ฮ›โ€ฒฮ›superscriptฮ›โ€ฒ\Lambda=\Lambda^{\prime}.

Due to the involution symmetry (80) of Schur functions, we find that

๐’ซฮ›โ€ฒ[m]โ€‹(z1,z2)=๐’ซฮ›[m]โ€‹(โˆ’z1,z2),whenmis odd.superscriptsubscript๐’ซsuperscriptฮ›โ€ฒdelimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2superscriptsubscript๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2whenmis odd.\mathcal{P}_{\Lambda^{\prime}}^{[m]}(z_{1},z_{2})=\mathcal{P}_{\Lambda}^{[m]}(-z_{1},z_{2}),\quad\mbox{when $m$ is odd.}(85)

This means that root curves for the index vector ฮ›ฮ›\Lambda and its conjugate vector ฮ›โ€ฒsuperscriptฮ›โ€ฒ\Lambda^{\prime} are related as a mirror reflection in z1subscript๐‘ง1z_{1}. Then, in view of the connection (30) between rogue curves of DSI and root curves of ๐’ซฮ›[m]โ€‹(z1,z2)superscriptsubscript๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2\mathcal{P}_{\Lambda}^{[m]}(z_{1},z_{2}), we conclude that when p=1๐‘1p=1, m๐‘šm is odd and amsubscript๐‘Ž๐‘ša_{m} real and large in magnitude, the rogue curve ARโ€‹(x,y,t)subscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘กA_{R}(x,y,t) of DSI for the order-index vector ฮ›ฮ›\Lambda would be a mirror reflection of the rogue curve in the x๐‘ฅx variable for the conjugate order-index vector ฮ›โ€ฒsuperscriptฮ›โ€ฒ\Lambda^{\prime}, i.e.,

ARโ€‹(x,y,t)|ฮ›=ARโ€‹(โˆ’x,y,t)|ฮ›โ€ฒ,whenp=1,mis odd in large|am|.evaluated-atsubscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘กฮ›evaluated-atsubscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘กsuperscriptฮ›โ€ฒwhenp=1,mis odd in large|am|.A_{R}(x,y,t)|_{\Lambda}=A_{R}(-x,y,t)|_{\Lambda^{\prime}},\quad\mbox{when $p=1$, $m$ is odd in large $|a_{m}|$.}(86)

For self-conjugate ฮ›ฮ›\Lambda where ฮ›โ€ฒ=ฮ›superscriptฮ›โ€ฒฮ›\Lambda^{\prime}=\Lambda, its rogue curve would be symmetric in x๐‘ฅx.

To verify this connection (86), we take p=1๐‘1p=1, and ฮ›=(4,5)ฮ›45\Lambda=(4,5). As we have mentioned earlier, for this ฮ›ฮ›\Lambda, its conjugate is ฮ›โ€ฒ=(2,3,4,5)superscriptฮ›โ€ฒ2345\Lambda^{\prime}=(2,3,4,5). For these two order-index vectors ฮ›ฮ›\Lambda and ฮ›โ€ฒsuperscriptฮ›โ€ฒ\Lambda^{\prime}, we choose the same parameter vector a=(0,0,0,0,20000)a000020000\textbf{\emph{a}}=(0,0,0,0,20000), where a5subscript๐‘Ž5a_{5} is real and large. Then, rogue curves |A|๐ด|A| for these ฮ›ฮ›\Lambda and ฮ›โ€ฒsuperscriptฮ›โ€ฒ\Lambda^{\prime} at t=0๐‘ก0t=0 can be obtained from Lemma1, which are displayed in Fig.10. One can see that these curves are indeed a mirror reflection of each other in x๐‘ฅx, confirming the above symmetry (86).

Rogue curves in the Davey-Stewartson I equation (10)

When m๐‘šm is even in the large real amsubscript๐‘Ž๐‘ša_{m} parameter (in magnitude), rogue curves for ฮ›ฮ›\Lambda and ฮ›โ€ฒsuperscriptฮ›โ€ฒ\Lambda^{\prime} are also related, but the amsubscript๐‘Ž๐‘ša_{m} parameter for ฮ›ฮ›\Lambda and ฮ›โ€ฒsuperscriptฮ›โ€ฒ\Lambda^{\prime} should have opposite signs, i.e., the symmetry now becomes

ARโ€‹(x,y,t)|ฮ›,am=ARโ€‹(โˆ’x,y,t)|ฮ›โ€ฒ,โˆ’am,whenp=1,mis even in large|am|.evaluated-atsubscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘กฮ›subscript๐‘Ž๐‘ševaluated-atsubscript๐ด๐‘…๐‘ฅ๐‘ฆ๐‘กsuperscriptฮ›โ€ฒsubscript๐‘Ž๐‘šwhenp=1,mis even in large|am|.A_{R}(x,y,t)|_{\Lambda,a_{m}}=A_{R}(-x,y,t)|_{\Lambda^{\prime},-a_{m}},\quad\mbox{when $p=1$, $m$ is even in large $|a_{m}|$.}(87)

We note that except for amsubscript๐‘Ž๐‘ša_{m}, the other Oโ€‹(1)๐‘‚1O(1) parameters in the vectors a=(0,a2,โ€ฆ,anN)a0subscript๐‘Ž2โ€ฆsubscript๐‘Žsubscript๐‘›๐‘\textbf{\emph{a}}=(0,a_{2},\dots,a_{n_{N}}) for these two rogue waves of ฮ›ฮ›\Lambda and ฮ›โ€ฒsuperscriptฮ›โ€ฒ\Lambda^{\prime} do not need to be opposite of each other and can be totally independent of each other. The connection (87) can be seen from the symmetry

๐’ซฮ›โ€ฒ[m]โ€‹(z1,z2)=๐’ซ^ฮ›[m]โ€‹(โˆ’z1,z2),whenmis even,superscriptsubscript๐’ซsuperscriptฮ›โ€ฒdelimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2superscriptsubscript^๐’ซฮ›delimited-[]๐‘šsubscript๐‘ง1subscript๐‘ง2whenmis even,\mathcal{P}_{\Lambda^{\prime}}^{[m]}(z_{1},z_{2})=\hat{\mathcal{P}}_{\Lambda}^{[m]}(-z_{1},z_{2}),\quad\mbox{when $m$ is even,}(88)

which comes from the involution symmetry (80) when m๐‘šm is even. Here, ๐’ซ^ฮ›[m]superscriptsubscript^๐’ซฮ›delimited-[]๐‘š\hat{\mathcal{P}}_{\Lambda}^{[m]} is as defined in Eq.(76).

To verify this rogue curve connection (87), we take p=1๐‘1p=1, and ฮ›=(2,4)ฮ›24\Lambda=(2,4). For this ฮ›ฮ›\Lambda, its conjugate is ฮ›โ€ฒ=(1,3,4)superscriptฮ›โ€ฒ134\Lambda^{\prime}=(1,3,4). For these two order-index vectors ฮ›ฮ›\Lambda and ฮ›โ€ฒsuperscriptฮ›โ€ฒ\Lambda^{\prime}, we choose a=(0,0,0,5000)a0005000\textbf{\emph{a}}=(0,0,0,5000) for ฮ›ฮ›\Lambda and (0,0,0,โˆ’5000)0005000(0,0,0,-5000) for ฮ›โ€ฒsuperscriptฮ›โ€ฒ\Lambda^{\prime}, whose a4subscript๐‘Ž4a_{4} parameters are real and opposite of each other. Then, rogue curves |A|๐ด|A| for these two sets of parameters at t=0๐‘ก0t=0 can be obtained from Lemma1, which are displayed in Fig.11. One can see that these curves are indeed a mirror reflection of each other in x๐‘ฅx, confirming the above symmetry (87).

Rogue curves in the Davey-Stewartson I equation (11)

When pโ‰ 1๐‘1p\neq 1, rogue curves for ฮ›ฮ›\Lambda and ฮ›โ€ฒsuperscriptฮ›โ€ฒ\Lambda^{\prime} would be related through the symmetry (86) or (87) under a linear transformation, which can be seen from Eq.(67).

X Conclusions and discussions

In this article, we have reported new rogue wave patterns whose wave crests form closed or open curves in the spatial plane in the Davey-Stewartson I equation. The shapes of these rogue curves, such as rings, double rings and others, are striking, and their appearance in the Davey-Stewartson I equation is a significant phenomenon. Analytically, we reveal that such rogue curves would appear when an internal parameter in bilinear expressions of the rogue waves are real and large. Performing large-parameter asymptotic analysis, we have discovered that these rogue curves can be predicted by root curves of certain types of double-real-variable polynomials. We have also compared our analytical predictions of rogue curves to true solutions and demonstrated good agreement between them.

An interesting question is whether such rogue curves would also appear in other (2+1)-dimensional integrable systems, such as the (2+1)-dimensional three-wave resonant interaction system. This question will be left to future studies.

Acknowledgment

The work of B.Y. was supported in part by the National Natural Science Foundation of China (GrantNo.12201326), and the work of J.Y. was supported in part by the National Science Foundation (U.S.) under award number DMS-1910282.

Appendix

General rational solutions (including rogue waves) in the Davey-Stewartson I eqaution (1) were derived in OhtaYangDSI , but those solutions involved differential operators and were not explicit. In this appendix, we present explicit expressions of these general rational solutions and their brief proof.

Lemma 2 The Davey-Stewartson I eqaution (1) admits general rational solutions

Aฮ›โ€‹(x,y,t)=2โ€‹gf,subscript๐ดฮ›๐‘ฅ๐‘ฆ๐‘ก2๐‘”๐‘“\displaystyle A_{\Lambda}(x,y,t)=\sqrt{2}\frac{g}{f},(89)
Qฮ›โ€‹(x,y,t)=1โˆ’2โ€‹ฯตโ€‹(logโกf)xโ€‹x,subscript๐‘„ฮ›๐‘ฅ๐‘ฆ๐‘ก12italic-ฯตsubscript๐‘“๐‘ฅ๐‘ฅ\displaystyle Q_{\Lambda}(x,y,t)=1-2\epsilon\left(\log f\right)_{xx},(90)

where N๐‘N is a positive integer, ฮ›=(n1,n2,โ€ฆ,nN)ฮ›subscript๐‘›1subscript๐‘›2โ€ฆsubscript๐‘›๐‘\Lambda=(n_{1},n_{2},\dots,n_{N}) is an order-index vector, each nisubscript๐‘›๐‘–n_{i} is a nonnegative integer, n1<n2<โ‹ฏ<nNsubscript๐‘›1subscript๐‘›2โ‹ฏsubscript๐‘›๐‘n_{1}<n_{2}<\cdots<n_{N},

f=ฯ„0,g=ฯ„1,formulae-sequence๐‘“subscript๐œ0๐‘”subscript๐œ1f=\tau_{0},\quad g=\tau_{1},(91)
ฯ„k=det1โ‰คi,jโ‰คN(mi,j(k)),subscript๐œ๐‘˜subscriptformulae-sequence1๐‘–๐‘—๐‘superscriptsubscript๐‘š๐‘–๐‘—๐‘˜\tau_{k}=\det_{\begin{subarray}{l}1\leq i,j\leq N\end{subarray}}\left(\begin{array}[]{c}m_{i,j}^{(k)}\end{array}\right),(92)

the matrix elements mi,j(k)superscriptsubscript๐‘š๐‘–๐‘—๐‘˜m_{i,j}^{(k)} of ฯ„ksubscript๐œ๐‘˜\tau_{k} are defined by

mi,j(k)=โˆ‘ฮฝ=0minโก(ni,nj)(1pi+pjโˆ—)โ€‹[piโ€‹pjโˆ—(pi+pjโˆ—)2]ฮฝโ€‹Sniโˆ’ฮฝโ€‹[xi,j+โ€‹(k)+ฮฝโ€‹si,j+ai]โ€‹Snjโˆ’ฮฝโ€‹[xj,iโˆ’โ€‹(k)+ฮฝโ€‹sj,iโˆ—+ajโˆ—],superscriptsubscript๐‘š๐‘–๐‘—๐‘˜superscriptsubscript๐œˆ0subscript๐‘›๐‘–subscript๐‘›๐‘—1subscript๐‘๐‘–superscriptsubscript๐‘๐‘—superscriptdelimited-[]subscript๐‘๐‘–superscriptsubscript๐‘๐‘—superscriptsubscript๐‘๐‘–superscriptsubscript๐‘๐‘—2๐œˆsubscript๐‘†subscript๐‘›๐‘–๐œˆdelimited-[]subscriptsuperscriptx๐‘–๐‘—๐‘˜๐œˆsubscripts๐‘–๐‘—subscripta๐‘–subscript๐‘†subscript๐‘›๐‘—๐œˆdelimited-[]subscriptsuperscriptx๐‘—๐‘–๐‘˜๐œˆsubscriptsuperscripts๐‘—๐‘–superscriptsubscripta๐‘—m_{i,j}^{(k)}=\sum_{\nu=0}^{\min(n_{i},n_{j})}\left(\frac{1}{p_{i}+p_{j}^{*}}\right)\left[\frac{p_{i}p_{j}^{*}}{(p_{i}+p_{j}^{*})^{2}}\right]^{\nu}\hskip 1.70709ptS_{n_{i}-\nu}[\textbf{\emph{x}}^{+}_{i,j}(k)+\nu\textbf{\emph{s}}_{i,j}+\textbf{\emph{a}}_{i}]\hskip 1.70709ptS_{n_{j}-\nu}[\textbf{\emph{x}}^{-}_{j,i}(k)+\nu\textbf{\emph{s}}^{*}_{j,i}+\textbf{\emph{a}}_{j}^{*}],(93)

vectors xi,jยฑโ€‹(k)=(x1,i,jยฑ,x2,i,jยฑ,โ‹ฏ)subscriptsuperscriptxplus-or-minus๐‘–๐‘—๐‘˜superscriptsubscript๐‘ฅ1๐‘–๐‘—plus-or-minussuperscriptsubscript๐‘ฅ2๐‘–๐‘—plus-or-minusโ‹ฏ\textbf{\emph{x}}^{\pm}_{i,j}(k)=\left(x_{1,i,j}^{\pm},x_{2,i,j}^{\pm},\cdots\right) are

xr,i,j+โ€‹(k)=(โˆ’1)rr!โ€‹piโ€‹xโˆ’1+(โˆ’2)rr!โ€‹pi2โ€‹xโˆ’2+1r!โ€‹piโ€‹x1+2rr!โ€‹pi2โ€‹x2+kโ€‹ฮดr,1โˆ’cr,i,j,superscriptsubscript๐‘ฅ๐‘Ÿ๐‘–๐‘—๐‘˜superscript1๐‘Ÿ๐‘Ÿsubscript๐‘๐‘–subscript๐‘ฅ1superscript2๐‘Ÿ๐‘Ÿsuperscriptsubscript๐‘๐‘–2subscript๐‘ฅ21๐‘Ÿsubscript๐‘๐‘–subscript๐‘ฅ1superscript2๐‘Ÿ๐‘Ÿsuperscriptsubscript๐‘๐‘–2subscript๐‘ฅ2๐‘˜subscript๐›ฟ๐‘Ÿ1subscript๐‘๐‘Ÿ๐‘–๐‘—\displaystyle x_{r,i,j}^{+}(k)=\frac{(-1)^{r}}{r!p_{i}}x_{-1}+\frac{(-2)^{r}}{r!p_{i}^{2}}x_{-2}+\frac{1}{r!}p_{i}x_{1}+\frac{2^{r}}{r!}p_{i}^{2}x_{2}+k\delta_{r,1}-c_{r,i,j},(94)
xr,i,jโˆ’โ€‹(k)=(โˆ’1)rr!โ€‹piโˆ—โ€‹xโˆ’1+(โˆ’2)rr!โ€‹(piโˆ—)2โ€‹x2+1r!โ€‹piโˆ—โ€‹x1+2rr!โ€‹(piโˆ—)2โ€‹xโˆ’2โˆ’kโ€‹ฮดr,1โˆ’cr,i,jโˆ—,superscriptsubscript๐‘ฅ๐‘Ÿ๐‘–๐‘—๐‘˜superscript1๐‘Ÿ๐‘Ÿsuperscriptsubscript๐‘๐‘–subscript๐‘ฅ1superscript2๐‘Ÿ๐‘Ÿsuperscriptsuperscriptsubscript๐‘๐‘–2subscript๐‘ฅ21๐‘Ÿsuperscriptsubscript๐‘๐‘–subscript๐‘ฅ1superscript2๐‘Ÿ๐‘Ÿsuperscriptsuperscriptsubscript๐‘๐‘–2subscript๐‘ฅ2๐‘˜subscript๐›ฟ๐‘Ÿ1superscriptsubscript๐‘๐‘Ÿ๐‘–๐‘—\displaystyle x_{r,i,j}^{-}(k)=\frac{(-1)^{r}}{r!p_{i}^{*}}x_{-1}+\frac{(-2)^{r}}{r!(p_{i}^{*})^{2}}x_{2}+\frac{1}{r!}p_{i}^{*}x_{1}+\frac{2^{r}}{r!}(p_{i}^{*})^{2}x_{-2}-k\delta_{r,1}-c_{r,i,j}^{*},(95)
x1=12โ€‹(x+y),xโˆ’1=12โ€‹ฯตโ€‹(xโˆ’y),x2=โˆ’12โ€‹iโ€‹t,xโˆ’2=12โ€‹iโ€‹t,subscript๐‘ฅ112๐‘ฅ๐‘ฆsubscript๐‘ฅ112italic-ฯต๐‘ฅ๐‘ฆsubscript๐‘ฅ212i๐‘กsubscript๐‘ฅ212i๐‘ก\begin{array}[]{ll}x_{1}=\frac{1}{2}(x+y),&x_{-1}=\frac{1}{2}\epsilon(x-y),\\[5.0pt]x_{2}=-\frac{1}{2}\textrm{i}t,&x_{-2}=\frac{1}{2}\textrm{i}t,\end{array}(96)

pisubscript๐‘๐‘–p_{i} are free complex constants, ฮดr,1subscript๐›ฟ๐‘Ÿ1\delta_{r,1} is the Kronecker delta function, si,j=(s1,i,j,s2,i,j,โ‹ฏ)subscripts๐‘–๐‘—subscript๐‘ 1๐‘–๐‘—subscript๐‘ 2๐‘–๐‘—โ‹ฏ\textbf{\emph{s}}_{i,j}=(s_{1,i,j},s_{2,i,j},\cdots), cr,i,jsubscript๐‘๐‘Ÿ๐‘–๐‘—c_{r,i,j} and sr,i,jsubscript๐‘ ๐‘Ÿ๐‘–๐‘—s_{r,i,j} are coefficients from the expansions

lnโก[piโ€‹eฮบ+pjโˆ—pi+pjโˆ—]=โˆ‘r=1โˆžcr,i,jโ€‹ฮบr,lnโก[pi+pjโˆ—ฮบโ€‹(eฮบโˆ’1piโ€‹eฮบ+pjโˆ—)]=โˆ‘r=1โˆžsr,i,jโ€‹ฮบr,formulae-sequencesubscript๐‘๐‘–superscript๐‘’๐œ…superscriptsubscript๐‘๐‘—subscript๐‘๐‘–superscriptsubscript๐‘๐‘—superscriptsubscript๐‘Ÿ1subscript๐‘๐‘Ÿ๐‘–๐‘—superscript๐œ…๐‘Ÿsubscript๐‘๐‘–superscriptsubscript๐‘๐‘—๐œ…superscript๐‘’๐œ…1subscript๐‘๐‘–superscript๐‘’๐œ…superscriptsubscript๐‘๐‘—superscriptsubscript๐‘Ÿ1subscript๐‘ ๐‘Ÿ๐‘–๐‘—superscript๐œ…๐‘Ÿ\ln\left[\frac{p_{i}e^{\kappa}+p_{j}^{*}}{p_{i}+p_{j}^{*}}\right]=\sum_{r=1}^{\infty}c_{r,i,j}\kappa^{r},\ \ \ \ln\left[\frac{p_{i}+p_{j}^{*}}{\kappa}\left(\frac{e^{\kappa}-1}{p_{i}e^{\kappa}+p_{j}^{*}}\right)\right]=\sum_{r=1}^{\infty}s_{r,i,j}\kappa^{r},(97)

vectors aisubscripta๐‘–\textbf{\emph{a}}_{i} are

ai=(ai,1,ai,2,โ€ฆ,ai,ni),subscripta๐‘–subscript๐‘Ž๐‘–1subscript๐‘Ž๐‘–2โ€ฆsubscript๐‘Ž๐‘–subscript๐‘›๐‘–\textbf{\emph{a}}_{i}=\left(a_{i,1},a_{i,2},\ldots,a_{i,n_{i}}\right),(98)

and ai,j(1โ‰คiโ‰คN,1โ‰คjโ‰คni)a_{i,j}\hskip 1.42271pt(1\leq i\leq N,1\leq j\leq n_{i}) are free complex constants.

Note. In the above lemma, rogue waves would be obtained when all pisubscript๐‘๐‘–p_{i} are real. If pisubscript๐‘๐‘–p_{i} are not real, the rational solutions (3)-(4) would be soliton or multi-solitons on a constant background, not rogue waves OhtaYangDSI .

Proof. From the appendix of Ref.OhtaYangDSI , we know that DSI admits the following rational solutions in differential operator form,

Aฮ›โ€‹(x,y,t)=2โ€‹gf,Qฮ›โ€‹(x,y,t)=1โˆ’2โ€‹ฯตโ€‹(logโกf)xโ€‹x,formulae-sequencesubscript๐ดฮ›๐‘ฅ๐‘ฆ๐‘ก2๐‘”๐‘“subscript๐‘„ฮ›๐‘ฅ๐‘ฆ๐‘ก12italic-ฯตsubscript๐‘“๐‘ฅ๐‘ฅA_{\Lambda}(x,y,t)=\sqrt{2}\frac{g}{f},\quad Q_{\Lambda}(x,y,t)=1-2\epsilon\left(\log f\right)_{xx},(99)

where ฮ›=(n1,n2,โ€ฆ,nN)ฮ›subscript๐‘›1subscript๐‘›2โ€ฆsubscript๐‘›๐‘\Lambda=(n_{1},n_{2},\dots,n_{N}), N๐‘N is the length of ฮ›ฮ›\Lambda, each nisubscript๐‘›๐‘–n_{i} is a nonnegative integer, n1<n2<โ‹ฏ<nNsubscript๐‘›1subscript๐‘›2โ‹ฏsubscript๐‘›๐‘n_{1}<n_{2}<\cdots<n_{N},

f=ฯ„0,g=ฯ„1,formulae-sequence๐‘“subscript๐œ0๐‘”subscript๐œ1f=\tau_{0},\quad g=\tau_{1},(100)
ฯ„k=det1โ‰คi,jโ‰คN(mi,j(k)),subscript๐œ๐‘˜subscriptformulae-sequence1๐‘–๐‘—๐‘superscriptsubscript๐‘š๐‘–๐‘—๐‘˜\tau_{k}=\det_{\begin{subarray}{l}1\leq i,j\leq N\end{subarray}}\left(\begin{array}[]{c}m_{i,j}^{(k)}\end{array}\right),(101)

the matrix elements mi,j(k)superscriptsubscript๐‘š๐‘–๐‘—๐‘˜m_{i,j}^{(k)} of ฯ„ksubscript๐œ๐‘˜\tau_{k} are defined by

mi,j(k)=(pโ€‹โˆ‚p)ni(ni)!โ€‹(qโ€‹โˆ‚q)nj(nj)!โ€‹[1p+qโ€‹(โˆ’pq)kโ€‹eฮ˜i,jโ€‹(x,y,t)]|p=pi,q=qj,superscriptsubscript๐‘š๐‘–๐‘—๐‘˜evaluated-atsuperscript๐‘subscript๐‘subscript๐‘›๐‘–subscript๐‘›๐‘–superscript๐‘žsubscript๐‘žsubscript๐‘›๐‘—subscript๐‘›๐‘—delimited-[]1๐‘๐‘žsuperscript๐‘๐‘ž๐‘˜superscript๐‘’subscriptฮ˜๐‘–๐‘—๐‘ฅ๐‘ฆ๐‘กformulae-sequence๐‘subscript๐‘๐‘–๐‘žsubscript๐‘ž๐‘—m_{i,j}^{(k)}=\frac{\left(p\partial_{p}\right)^{n_{i}}}{(n_{i})!}\frac{\left(q\partial_{q}\right)^{n_{j}}}{(n_{j})!}\left.\left[\frac{1}{p+q}\left(-\frac{p}{q}\right)^{k}e^{\Theta_{i,j}(x,y,t)}\right]\ \right|_{p=p_{i},\ q=q_{j}},(102)
ฮ˜i,jโ€‹(x,y,t)=(1p2โˆ’1q2)โ€‹xโˆ’2+(1p+1q)โ€‹xโˆ’1+(p+q)โ€‹x1+(p2โˆ’q2)โ€‹x2+โˆ‘r=1โˆžar,iโ€‹lnrโก[ppi]+ar,jโˆ—โ€‹lnrโก[qqj],subscriptฮ˜๐‘–๐‘—๐‘ฅ๐‘ฆ๐‘ก1superscript๐‘21superscript๐‘ž2subscript๐‘ฅ21๐‘1๐‘žsubscript๐‘ฅ1๐‘๐‘žsubscript๐‘ฅ1superscript๐‘2superscript๐‘ž2subscript๐‘ฅ2superscriptsubscript๐‘Ÿ1subscript๐‘Ž๐‘Ÿ๐‘–superscript๐‘Ÿ๐‘subscript๐‘๐‘–subscriptsuperscript๐‘Ž๐‘Ÿ๐‘—superscript๐‘Ÿ๐‘žsubscript๐‘ž๐‘—\Theta_{i,j}(x,y,t)=\left(\frac{1}{p^{2}}-\frac{1}{q^{2}}\right)x_{-2}+\left(\frac{1}{p}+\frac{1}{q}\right)x_{-1}+(p+q)x_{1}+(p^{2}-q^{2})x_{2}+\sum_{r=1}^{\infty}a_{r,i}\ln^{r}\left[\frac{p}{p_{i}}\right]+a^{*}_{r,j}\ln^{r}\left[\frac{q}{q_{j}}\right],

variables (xโˆ’1,xโˆ’2,x1,x2)subscript๐‘ฅ1subscript๐‘ฅ2subscript๐‘ฅ1subscript๐‘ฅ2(x_{-1},x_{-2},x_{1},x_{2}) are related to (x,y,t)๐‘ฅ๐‘ฆ๐‘ก(x,y,t) by Eq.(96), pjsubscript๐‘๐‘—p_{j} are free complex constants, qj=pjโˆ—subscript๐‘ž๐‘—superscriptsubscript๐‘๐‘—q_{j}=p_{j}^{*}, and ar,iโ€‹(r=1,2,โ€ฆ)subscript๐‘Ž๐‘Ÿ๐‘–๐‘Ÿ12โ€ฆa_{r,i}\hskip 1.42271pt(r=1,2,\dots) are free complex constants. The main difference between this solution form and that in Ref.OhtaYangDSI is a simpler parameterization, which leads to simpler solution expressions.

The next step is to remove the differential operators in Eq.(102) and derive explicit expressions for the matrix element mi,j(k)superscriptsubscript๐‘š๐‘–๐‘—๐‘˜m_{i,j}^{(k)}. The procedure to do this is very similar to that we used in Refs.OhtaJY2012 ; YangYang3wave . Performing such calculations, we can show that mi,j(k)superscriptsubscript๐‘š๐‘–๐‘—๐‘˜m_{i,j}^{(k)} is as given in Eq.(93) of Lemma 2. This completes the brief proof of Lemma 2.

Lemma 1 in the main text is a special case of Lemma 2. To get Lemma 1, we set all pisubscript๐‘๐‘–p_{i} to be the same and real in Lemma 2 and denote pi=psubscript๐‘๐‘–๐‘p_{i}=p, where p๐‘p is a real parameter. In addition, we require ai,jsubscript๐‘Ž๐‘–๐‘—a_{i,j} in Eq.(98) to be independent of the i๐‘–i index. In this case, since the length of vector aisubscripta๐‘–\textbf{\emph{a}}_{i} is nisubscript๐‘›๐‘–n_{i}, and n1<n2<โ‹ฏ<nNsubscript๐‘›1subscript๐‘›2โ‹ฏsubscript๐‘›๐‘n_{1}<n_{2}<\cdots<n_{N}, then, each aisubscripta๐‘–\textbf{\emph{a}}_{i} for i<N๐‘–๐‘i<N is just a truncation of the longest vector aฮ›subscriptaฮ›\textbf{\emph{a}}_{\Lambda}. Since every aisubscripta๐‘–\textbf{\emph{a}}_{i} can be extended to the full aฮ›subscriptaฮ›\textbf{\emph{a}}_{\Lambda}, and the extended parts are dummy parameters which do not appear in the actual solution formulae, by performing this aisubscripta๐‘–\textbf{\emph{a}}_{i} extension, we can say all {ai}subscripta๐‘–\{\textbf{\emph{a}}_{i}\} vectors are the same in this case and thus denote

ai=a=(a1,a2,a3,โ€ฆ,anN).subscripta๐‘–asubscript๐‘Ž1subscript๐‘Ž2subscript๐‘Ž3โ€ฆsubscript๐‘Žsubscript๐‘›๐‘\textbf{\emph{a}}_{i}=\textbf{\emph{a}}=(a_{1},a_{2},a_{3},\dots,a_{n_{N}}).(103)

Under the above parameter restrictions, cr,i,jsubscript๐‘๐‘Ÿ๐‘–๐‘—c_{r,i,j} and sr,i,jsubscript๐‘ ๐‘Ÿ๐‘–๐‘—s_{r,i,j} in Lemma 2 are independent of the (i,j)๐‘–๐‘—(i,j) indices, i.e., cr,i,j=crsubscript๐‘๐‘Ÿ๐‘–๐‘—subscript๐‘๐‘Ÿc_{r,i,j}=c_{r} and sr,i,j=srsubscript๐‘ ๐‘Ÿ๐‘–๐‘—subscript๐‘ ๐‘Ÿs_{r,i,j}=s_{r}. Similarly, xi,jยฑsubscriptsuperscriptxplus-or-minus๐‘–๐‘—\textbf{\emph{x}}^{\pm}_{i,j} are independent of the (i,j)๐‘–๐‘—(i,j) indices too.In addition, the sjsubscript๐‘ ๐‘—s_{j} expansion in Eq.(97) reduces to (11) in Lemma 1. We further lump thea vector in Eq.(93) into x+superscriptx\textbf{\emph{x}}^{+} and the aโˆ—superscripta\textbf{\emph{a}}^{*} vector into xโˆ’superscriptx\textbf{\emph{x}}^{-}. In addition, we lump the crsubscript๐‘๐‘Ÿc_{r} parameter in Eq.(94) into arsubscript๐‘Ž๐‘Ÿa_{r} andthe crโˆ—superscriptsubscript๐‘๐‘Ÿc_{r}^{*} parameter into arโˆ—superscriptsubscript๐‘Ž๐‘Ÿa_{r}^{*}. After these treatments, we obtain Lemma 1 from Lemma 2.

References

References

  • (1)D. J. Benney and G. Roskes, โ€œWave instabilitiesโ€, Stud. Appl. Math. 48, 377โ€“385 (1969).
  • (2) A. Davey and K. Stewartson,โ€œOn three-dimensional packets of surface wavesโ€, Proc. R. Soc. London, A338, 101โ€“110 (1974).
  • (3)M.J. Ablowitz and H. Segur, Solitons and the InverseScattering Transform (SIAM, Philadelphia, 1981).
  • (4) C. Kharif, E. Pelinovsky and A. Slunyaev, Rogue waves in theocean (Springer, Berlin, 2009).
  • (5)A. Chabchoub, N. Hoffmann and N. Akhmediev,โ€œRogue wave observation in a water wave tank,โ€Phys. Rev. Lett. 106, 204502 (2011).
  • (6)A. Chabchoub, N. Hoffmann, M. Onorato, A. Slunyaev, A. Sergeeva, E. Pelinovsky and N. Akhmediev,โ€œObservation of a hierarchy of up to fifth-order rogue waves in a water tank,โ€Phys. Rev. E 86, 056601 (2012).
  • (7)A. Chabchoub, N. Hoffmann, M. Onorato, and N. Akhmediev, โ€œSuper rogue waves:observation of a higher-order breather in water wavesโ€, Phys. Rev. X 2, 011015 (2012).
  • (8)A. Chabchoub and N. Akhmediev, โ€œObservation of rogue wave triplets in waterwavesโ€, Phys. Lett. A 377, 2590-2593 (2013).
  • (9)D.R. Solli, C. Ropers, P. Koonath and B. Jalali,โ€œOptical rogue wavesโ€,Nature 450, 1054 (2007).
  • (10)S. Wabnitz (Ed.), Nonlinear Guided Wave Optics: A testbed for extreme waves (IOP Publishing, Bristol, UK, 2017).
  • (11)B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev and J.M. Dudley,โ€œThe Peregrine soliton in nonlinear fibre optics,โ€Nat. Phys. 6, 790 (2010).
  • (12)M. Erkintalo1, K. Hammani, B. Kibler, C. Finot, N. Akhmediev, J.M. Dudley and G. Genty, โ€œHigher-order modulation instability in nonlinear fiber opticsโ€, Phys. Rev. Lett. 107, 253901 (2011).
  • (13)H. Bailung, S.K. Sharma and Y. Nakamura, โ€œObservation of Peregrine solitons in amulticomponent plasma with negative ionsโ€, Phys. Rev. Lett. 107, 255005 (2011).
  • (14)A. Romero-Ros, G.C. Katsimiga, S.I. Mistakidis, S. Mossman, G. Biondini, P. Schmelcher,P. Engels, and P.G. Kevrekidis, โ€œExperimental realization of the Peregrine soliton inrepulsive two-component Bose-Einstein condensates , arXiv:2304.05951 [nlin.PS] (2023).
  • (15)Y. Tsai, J. Tsai and L. I, โ€œGeneration of acoustic rogue waves in dustyplasmas through three-dimensional particle focusing by distorted waveformsโ€, Nat. Phys. 12, 573 (2016).
  • (16)D.H. Peregrine,โ€œWater waves, nonlinear Schrรถdinger equations and their solutions,โ€J. Aust. Math. Soc. B 25, 16 (1983).
  • (17)N. Akhmediev, A. Ankiewicz and J.M. Soto-Crespo,โ€œRogue waves and rational solutions of the nonlinear Schrรถdinger equation,โ€Phys. Rev. E 80, 026601 (2009).
  • (18)P. Dubard, P. Gaillard, C. Klein and V.B. Matveev,โ€œOn multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation,โ€Eur. Phys. J. Spec. Top. 185, 247 (2010).
  • (19)D.J. Kedziora, A. Ankiewicz and N. Akhmediev,โ€œCircular rogue wave clusters,โ€Phys. Rev. E 84, 056611 (2011).
  • (20)B.L. Guo, L.M. Ling and Q.P. Liu,โ€œNonlinear Schrรถdinger equation: generalized Darboux transformation and rogue wave solutions,โ€Phys. Rev. E 85, 026607 (2012).
  • (21)Y. Ohta and J. Yang,โ€œGeneral high-order rogue waves and their dynamics in the nonlinear Schrรถdinger equation,โ€Proc. R. Soc. Lond. A 468, 1716 (2012).
  • (22)J. Chen and D. Pelinovsky, โ€œRogue periodic waves of thefocusing nonlinear Schrรถdinger equationโ€, Proc. R. Soc. A 474, 20170814 (2018).
  • (23)F. Baronio, A. Degasperis, M. Conforti and S. Wabnitz,โ€œSolutions of the vector nonlinear Schrรถdinger equations: evidence for deterministic rogue wavesโ€,Phys. Rev. Lett. 109, 044102 (2012).
  • (24)F. Baronio, M. Conforti, A. Degasperis, S. Lombardo, M. Onorato and S. Wabnitz,โ€œVector rogue waves and baseband modulation instability in the defocusing regimeโ€,Phys. Rev. Lett. 113, 034101 (2014).
  • (25)L. Ling, B. Guo and L. Zhao, โ€œHigh-order rogue waves in vector nonlinear Schrรถdinger equationsโ€, Phys Rev E, 89, 041201(R) (2014).
  • (26)S. Chen and D. Mihalache, โ€œVector rogue waves in the Manakov system: diversity and compossibilityโ€,J. Phys. A 48, 215202 (2015).
  • (27)L. Zhao, B. Guo and L. Ling, โ€œHigh-order rogue wave solutions for the couplednonlinear Schrรถdinger equations-IIโ€, J. Math. Phys. 57, 043508 (2016).
  • (28)Y. Ohta and J. Yang, โ€œRogue waves in the Davey-Stewartson-I equationโ€, Phys. Rev. E 86, 036604 (2012).
  • (29)B. Yang and J. Yang, โ€œGeneral rogue waves in the three-wave resonant interaction systemsโ€, IMA J. Appl. Math. 86, 378-425(2021).
  • (30)F.D. Murnaghan, โ€œOn the representations of the symmetric groupโ€, Am. J. Math. 59 437-88 (1937)
  • (31)S. Chakravarty and M. Zowada, โ€œClassification of KPI lumpsโ€, J. Phys. A: Math. Theor. 55215701 (2022).
  • (32)S. Chakravarty and M. Zowada, โ€œMulti-lump wave patterns of KPI via integer partitionsโ€, Physica D, 446 133644 (2023).
Rogue curves in the Davey-Stewartson I equation (2024)

References

Top Articles
Latest Posts
Article information

Author: Saturnina Altenwerth DVM

Last Updated:

Views: 5452

Rating: 4.3 / 5 (64 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Saturnina Altenwerth DVM

Birthday: 1992-08-21

Address: Apt. 237 662 Haag Mills, East Verenaport, MO 57071-5493

Phone: +331850833384

Job: District Real-Estate Architect

Hobby: Skateboarding, Taxidermy, Air sports, Painting, Knife making, Letterboxing, Inline skating

Introduction: My name is Saturnina Altenwerth DVM, I am a witty, perfect, combative, beautiful, determined, fancy, determined person who loves writing and wants to share my knowledge and understanding with you.